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Study objective: We aimed to build prediction models for shift-level emergency department (ED) patient volume that could be
used to facilitate prediction-driven staffing. We sought to evaluate the predictive power of rich real-time information and
understand 1) which real-time information had predictive power and 2) what prediction techniques were appropriate for
forecasting ED demand.

Methods: We conducted a retrospective study in an ED site in a large academic hospital in New York City. We examined various
prediction techniques, including linear regression, regression trees, extreme gradient boosting, and time series models. By
comparing models with and without real-time predictors, we assessed the potential gain in prediction accuracy from real-time
information.

Results: Real-time predictors improved prediction accuracy on models without contemporary information from 5% to 11%. Among
extensive real-time predictors examined, recent patient arrival counts, weather, Google trends, and concurrent patient comorbidity
information had significant predictive power. Out of all the forecasting techniques explored, SARIMAX (Seasonal Autoregressive
Integrated Moving Average with eXogenous factors) achieved the smallest out-of-sample the root mean square error (RMSE) of
14.656 and mean absolute prediction error (MAPE) of 8.703%. Linear regression was the second best, with out-of-sample RMSE
and MAPE equal to 15.366 and 9.109%, respectively.

Conclusion: Real-time information was effective in improving the prediction accuracy of ED demand. Practice and policy
implications for designing staffing paradigms with real-time demand forecasts to reduce ED congestion were discussed. [Ann
Emerg Med. 2023;81:728-737.]
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INTRODUCTION
Background and Importance

Across the United States, the focus on developing
computational/machine learning models to predict demand
for patient care in the emergency department (ED) has
been growing within the emergency medicine field. Over
the years, a variety of prediction techniques has been
examined. Early studies have utilized time series models to
forecast future arrivals based on recent arrival count
information.1-6 Additional studies have used other
prediction models with exogenous predictors, such as linear
regression, regression tree, etc.7-11 There have also been
recent efforts that explored techniques to combine time
series models with exogenous features.12,13 In addition to
using appropriate prediction techniques, it is important to
identify what information is most relevant in predicting
Emergency Medicine
emergency department demand, especially because a vast
amount of information is now made available by electronic
health records and various other data sources. Most of the
existing literature has used classic predictors such as
seasonality, holidays, weather, and previous arrival counts.
A few other studies have examined limited real-time
information beyond weather and previous arrival counts,
including ambulance diversion status and physician
workload.14-16 However, to our knowledge, little research
has explored the comprehensive patient-level and regional
data that are now more readily available. Such data could
provide novel additional information and improve ED
demand prognostication.

An important motivation behind these developments is
that predictive information about ED demand can be used
to improve operational efficiency in resource allocation and
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Editor’s Capsule Summary

What is already known on this topic
Models to predict emergency department (ED)
volumes for staffing tend toward simple analyses of
prior experience.

What question this study addressed
Does adding additional information, including
holidays, weather, and search terms on Google
trends, increase the accuracy of volume forecasts?

What this study adds to our knowledge
Inclusion of additional information yielded 5-11%
more accurate predictions of ED volumes for a single
academic site. A small number of variables
contributed most to improved accuracy.

How this is relevant to clinical practice
Increased prediction accuracy comes at a cost of
complexity. These analyses portray what additional
information is most useful in predicting ED volumes,
and so develop a hypothetical foundation for the
inclusion of “big data” in ED staffing.

better meet patients’ needs.17 Such proactive planning is
particularly relevant for nurse staffing, as nurses provide a
substantial portion of patient care and are an increasingly
limited resource in the ED (eg, because of nursing
shortages exacerbated by burnout and quitting during the
coronavirus [COVID-19] pandemic).18-20 Inefficient and
inadequate staffing is often associated with ED crowding,
reduced quality of care, clinician burnout, and reduced
hospital revenue.21-26 In the current nurse staffing practice,
EDs typically divide a day into multiple shifts. The ED
manager staffs most of the nurses for shifts weeks to
months in advance. A few hours before the nursing shift,
the ED manager could call in extra nurses with incentive
pays if s/he senses a higher patient volume that renders the
planned staffing level insufficient (after taking into account
staffing fluctuations because of sick calls and personal
emergencies). We refer to the former as base staffing and
the latter as surge staffing. The ED demand forecasts
synchronized with these 2 versus staffing decision epochs
can greatly facilitate these decisions. Because overtime/
surge staff are more expensive and less convenient for
nurses, it is important to understand how much we can
improve the prediction accuracy at the surge stage (when
we can use more real-time information) than at the base
stage (when limited information about the shift is
available). A recent study shows that even a small accuracy
improvement at the surge stage can lead to effective
Volume 81, no. 6 : June 2023
prediction-driven 2-stage (base and surge) nurse staffing
policies.27 However, little is known about whether (and if
so, by how much) real-time information improves
prediction accuracy in practice.

Goals of This Investigation
The goal of this study was to explore and evaluate rich

real-time information (including previous arrival counts,
temporal and seasonal variations, holidays, weather,
electronic health records, and Google trends) and a variety
of prediction techniques. By comparing prediction models
with and without real-time predictors, we assessed the gain
in prediction accuracy from real-time information. Lastly,
we described how these 2 types of prediction models (with
and without real-time information) could both contribute
to a prediction-driven staffing framework.
METHODS
Study Setting and Objective

We conducted a retrospective study using data obtained
from electronic health records for an adult ED in a large
academic hospital in New York City. A total of 284,550
adult patients who arrived at the ED from noon January 1,
2018, through 11:59 PM January 31, 2021, were included
in the analysis.

At the hospital, each day was divided into 2 main 12-hour
nursing shifts that started at 7:00 AM and 7:00 PM,
respectively. To facilitate relevant operational decisionmaking
(eg, nurse staffing decisions), the subject of prediction was the
shift-level arrival count, defined as the total number of
patients who arrived at the ED during each shift. Many
hospitals have more nursing shifts than the 2 listed above. In
those cases, we can divide the day into non-overlapping
intervals and predict the interval-level arrival count similarly.

Model fitting and selection were performed using 1 year
of data from January 1, 2018, to January 31, 2019, which
we hereafter refer to as the training set. Model performance
was tested on the subsequent 1-year data from February 1,
2019, to January 31, 2020, which we refer to as the test set.
The remaining data from February 1, 2020, to January 31,
2021, contained the outbreak of the COVID-19
pandemic, and we, thus, refer to it as the COVID test set.
Because patient volume was highly unpredictable during
the pandemic and the pandemic is likely a unique
generational event, we relegate the results and discussions
regarding the COVID test set to Appendix E1 (available at
http://www.annemergmed.com). The training, test, and
COVID test sets were fixed across all prediction models.
This study was approved by the Columbia University
institutional review board: protocol IRB-AAAT6452.
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Data Source
We used 3 sources of data: patient electronic health

records, weather data published by the National Centers for
Environmental Information, and Google trends.28,29 These
data sources were selected based on past work, extant
models, and our own novel hypotheses. Although the
importance of weather information has been well
established in the literature,the prediction power of real-
time patient electronic health records and Google trends
has been relatively underexplored.14-16

The data extracted from the patient electronic health
records specified for each patient: (i) the patient’s clinical
time stamps in the ED, including arrival time, first
evaluation time, admission decision time, and departure
time; (ii) the arrival source of the patient, eg, walking in or
by ambulance; (iii) the patient’s chief complaint(s), ie,
reason of visit; (iv) the patient’s Emergency Severity Index
(ESI); (v) laboratory tests and imaging ordered: indicators
for whether laboratory tests, computed tomography (CT),
magnetic resonance imaging (MRI), ultrasonography, and
radiographs were ordered; (vi) indicator for whether the
patient was admitted into the hospital; (vii) the Charlson
comorbidity index based on a list of 17 comorbidities; (viii)
age; and (ix) indicator for whether the patient left without
being seen.

In addition to the patient electronic health records, we
obtained retrospective daily weather information, including
the minimum temperature, precipitation, snow, wind, and
a hot-weather indicator for whether the maximum
temperature exceeds 86 �F (30 �C).

The last source of data came from Google trends, which
specified, for each day, the relative Google search volume
for the words “flu,” “emergency room,” “abdominal pain,”
“respiratory infection,” “chest pain,” “depression,” “heart
attack,” “abuse,” “disorder,” “weather,” and “hospital” in
New York State. We came up with a list of keywords based
on existing studies and our own novel hypotheses. Araz
et al30 established that the Google trends for “flu” were able
to forecast influenza-like-illness-related ED visits.
Tuominen et al31 found that the Google trends for “ED”

facilitated prediction. The other Google trends keywords
were constructed based on our own hypotheses. Because
the most frequent reasons for ED visits were abdominal
pain, respiratory infection, and chest pain, we hypothesized
that the Google search volumes for these keywords were
positively correlated with ED visits.32 In addition, we
hypothesized that the search volumes for “depression,”
“heart attack,” “abuse,” and “disorder” signaled relevant
illnesses in the neighborhood. Moreover, the Google search
record for “weather” might reflect citizens’ subjective
perception of weather conditions which might influence
730 Annals of Emergency Medicine
their stay-at-home/travel plans. Lastly, similar to “ED,” a
higher Google search volume for “hospital” might indicate
that more patients were seeking care.

When selecting the data sources, we tried to be
comprehensive by including as much potentially relevant
information as possible. Later in the model training and
feature selection section, we discuss procedures to train
different prediction models and identify relevant predictors.

Data Processing
We processed the data into shift-level predictors. The

data regarding day versus night, day of the week, month,
season, near-holiday indicators, weather, and Google trends
were readily available at the shift level. As for the data from
electric health records, we constructed the following 3
categories of shift-level predictors.

The first category was the previous arrival counts, which
specified for each shift the arrival count 1 day ago and 7
days ago, as well as the moving average of the shift-level
arrival count over the last 30 days. More precisely, the
arrival count on the previous day was the total number of
patients who arrived during the previous 24 hours. The
arrival count on the previous nth day was the 2 shifts
between the previous 24*(n-1)th and 24*(n)th hour.

The second category of predictors was the patient
comorbidity information, which we processed into the
following 3 sets. The first set specified for each comorbidity
the total number of patients with that comorbidity on the
previous day, ie, during the previous 2 shifts, and the sum
and the weighted sum of Charlson comorbidity indexes for
all patients on the previous day. The second set contained
similar information as the first set, but instead of
considering the previous day, calculated the average daily
number of patients with each comorbidity over the last 3
days, as well as the average daily sum and weighted sum of
Charlson comorbidity indexes for all patients over the last 3
days. The third set calculated for each comorbidity, the
percentage of patients with that comorbidity over the last 3
days, as well as the average sum and weighted sum of
Charlson comorbidity indexes per patient over the last 3
days. The difference between the second and third sets was
that the third set considered average comorbidity measures
on the individual level and was not influenced by how
many patients arrived over the last 3 days. The motivation
to consider comorbidity information over the last 3 days
was because of the existing findings that patients with
certain comorbidities are more likely to be readmitted to
the ED within 72 hours.33,34 These 3 sets of information
were likely to be correlated. Because it was a priori unclear
which specification had the most predictive power, we left
it to the model training and feature selection procedures to
Volume 81, no. 6 : June 2023
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sift out redundant information and identify important
features.

The third category of predictors was the recent ED
volume and patient severity information on the previous
day (ie, during the 24 hours before the focal shift). This
included the total number of patients who arrived by
ambulance, the total number of patients with ESI from 1 to
5, the total number of laboratory tests, CT, MRI,
ultrasounds, and XR ordered, the total number of patients
admitted to the hospital, the total number of patients
whose age exceeds 65 years old, the total number of
patients whose age exceeds 80 years old, the total number
of patients who left without being seen, the average waiting
time (from arrival time to first evaluation time), the average
treatment time (from first evaluation time to discharge
decision time), and the average boarding time (from
discharge decision time to departure time) on the previous
day. Intuitively, the waiting and boarding times captured
how busy the ED was on the previous day.
Model Evaluation
We focused on 2 measures of forecast accuracy for shift-

level arrival counts—the root mean square error (RMSE)
and the mean absolute prediction error (MAPE). Let (y1,
y2, ., yn) be the vector of observed arrival counts for a
total of n shifts, and let (by1, by2, ., byn) be the
corresponding vector of predicted arrival counts given by
the prediction model. The RMSE was the square RMSE
between the predicted and observed values:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼ 1

ðby i� yiÞ2
n

s

The MAPE was the average percentage error of the
prediction:

MAPE ¼ 1
n

Xn
i¼ 1

jby i� yij
yi

Both RMSE and MAPE are standard measures of
prediction accuracy.1-13 Hereafter, we refer to the RMSE
(MAPE) calculated on the training set as the training
RMSE (MAPE) and on the test set as the test RMSE
(MAPE). In addition to the overall RMSE and MAPE, we
also examined the over-estimation and under-estimation
errors separately.
Model Training and Feature Selection
Using the predictors developed in the Data Processing

section, we examined various prediction models. For the
Volume 81, no. 6 : June 2023
baseline models without real-time information, as we had
relatively few predictors, we trained linear regression and
regression tree models only. As we incorporated more real-
time information, in addition to linear regression and
regression tree, we trained more sophisticated models,
including extreme gradient boosting (XGBoost), seasonal
autoregressive integrated moving average (SARIMA), and
SARIMA embedded with linear regression (SARIMAX).
Comparatively, linear regression and regression tree models
are highly interpretable statistical models but may be
inadequate for nonlinear or autocorrelated data. The
SARIMA and SARIMAX models are time series models
that are effective in modeling seasonal trends and
autocorrelation. XGBoost is a sophisticated black-box
model for complex and nonlinear relationships but is less
interpretable than the other models.10 To select the
relevant features for linear regression, we used a modulated
2-way stepwise model selection method based on Akaike’s
information criterion (AIC). For the regression tree and
XGBoost, we used 10-fold cross-validation for
hyperparameter tuning. For the time series models, we used
a variation of the Hyndman-Khandakar algorithm35 to
determine the hyperparameters. Detailed training and
feature selection procedures for each model are provided in
Appendix E2 (available at http://www.annemergmed.com).
RESULTS
Models without Real-Time Information

We referred to the linear regression model without real-
time information as LR1. The significant covariates in LR1
were day versus night, day of the week, month, and
holidays. On the test set, LR1 achieved an RMSE of
16.425 and an MAPE of 9.627%. Table 1 lists the
estimated coefficients for the covariates in LR1. We refer to
the tree model without real-time information as TR1,
which had hyperparameters cp ¼ 0.01 and maxdepth ¼ 7.
Figure 1 illustrates the structure of TR1. TR1 performed
similarly to LR1 on the test set and achieved test RMSE of
16.644 and test MAPE of 9.353%.
Models with Real-Time Information
Linear regression. We referred to the linear regression

model with real-time information as LR2. It contained the
following predictors: day versus night, day of the week,
season, holidays, weather, the total number of arrivals 1 and
7 days ago, the moving average of daily arrival count over
the last 30 days, Google trends for “flu,” “respiratory
infection,” “depression,” “heart attack,” “abuse,” “weather,”
and “hospital, and the average daily numbers of patients
with comorbidity “HP” (hemiplegia or paraplegia),
Annals of Emergency Medicine 731
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Table 1. Estimated 95% confidence intervals for the coefficients of covariates in LR1, LR2, and ARIMAX (3, 1, 4).

Covariate LR1 LR2 ARIMAX

(Intercept) (82.954, 93.912) (40.041, 165.262) NA

Monday day (113.957, 125.610) (114.435, 125.615) (113.382, 128.438)

Monday night (3.784, 15.437) (3.620, 16.707) (5.719, 16.199)

Tuesday day (91.385, 103.079) (91.313, 104.781) (92.285, 107.536)

Tuesday night (0.288, 11.983) (0.860, 13.486) (2.217, 13.428)

Wednesday day (90.286, 101.881) (90.611, 103.142) (90.727, 106.277)

Wednesday night (-2.867, 8.727) (-2.334, 10.078) (-1.043, 9.901)

Thursday day (89.011, 100.577) (88.355, 100.533) (88.250, 103.409)

Thursday night (-0.989, 10.577) (-1.515, 10.850) (-0.382, 10.772)

Friday day (78.765, 90.382) (77.643, 90.024) (77.419, 93.023)

Friday night (0.285, 11.902) (0.115, 13.058) (0.735, 12.967)

Saturday day (50.904, 62.516) (51.835, 64.912) (51.470, 67.691)

Saturday night (-1.961, 9.651) (-0.265, 12.516) (0.045, 12.018)

Sunday day (45.866, 57.365) (47.924, 60.746) (47.012, 63.448)

January (0.888, 11.453) NA NA

February (4.473, 15.292) NA NA

March (-8.061, 2.530) NA NA

April (-7.621, 3.061) NA NA

May (-2.615, 7.933) NA NA

June (-5.389, 5.289) NA NA

July (1.364, 11.908) NA NA

August (-1.765, 8.832) NA NA

September (-2.706, 7.923) NA NA

October (0.292, 10.838) NA NA

November (-8.843, 1.806) NA NA

Fall NA (-6.185, 1.684) (-6.102, 1.843)

Summer NA (-5.770, 3.182) (-5.806, 3.237)

Winter NA (-2.920, 7.158) (-2.978, 7.531)

Holiday (-29.459, -15.608) (-30.387, -16.367) (-30.600, -17.402)

Holiday – 1 day (-17.293, -3.456) (-17.416, -3.808) (-17.879, -4.844)

Holiday D 1 day (8.760, 22.594) (8.709, 22.486) (8.496, 21.584)

Min temperature NA (0.267, 0.701) (0.274, 0.702)

Precipitation NA (-0.257, -0.043) (-0.247, -0.049)

Snow NA (-0.231, -0.100) (-0.230, -0.109)

Wind NA (0.003, 0.149) (0.008, 0.145)

Max temperature ‡ 86 �F NA (-9.508, -1.155) (-8.879, -0.749)

Recent arrival count 1-day prior NA (-0.039, 0.065) NA

Recent arrival count 7-day prior NA (-0.006, 0.090) (-0.010, 0.089)

30-day moving average NA (-0.749, 0.217) (-0.772, 0.210)

Google trend “abuse” NA (-0.295, 0.007) (-0.315, -0.007)

Google trend “depression” NA (-0.230, 0.114) (-0.234, 0.113)

Google trend “flu” NA (0.142, 0.531) (0.153, 0.547)

Google trend “heart attack” NA (-0.198, 0.062) (-0.197, 0.065)

Google trend “hospital” NA (-0.045, 0.711) (-0.038, 0.726)

Google trend “respiratory
infection”

NA (-0.061, 0.198) (-0.059, 0.203)

Google trend “weather” NA (-0.149, 0.132) (-0.151, 0.131)
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Table 1. Continued.

Covariate LR1 LR2 ARIMAX

Total # patients with comorbidity
CANC over the last 3 days

NA (-0.001, 1.976) (0.043, 1.895)

Total # patients with comorbidity
HP over the last 3 days

NA (-7.601, 2.989) (-7.049, 2.764)

Total # patients with comorbidity
REND over the last 3 days

NA (-1.659, 0.044) (-1.629, -0.043)

AR1 (f1) NA NA (-0.758, 0.144)

AR2 (f2) NA NA (-0.320, 0.363)

AR3 (f3) NA NA (-0.988, -0.266)

MA1 (q1) NA NA (-1.139, -0.304)

MA2 (q2) NA NA (-0.557, 0.175)

MA3 (q3) NA NA (0.235, 0.956)

MA4 (q4) NA NA (-0.986, -0.379)

LR1, linear regression model without real-time information; LR2, linear regression model with real-time information; ARIMAX, Autoregressive Integrated Moving Average with
eXogenous factors); CANC, cancer; HP, hemiplegia or paraplegia; REND, renal disease; AR,;MA,; f; q
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“CANC” (cancer), and “REND” (renal disease) over the
last 3 days. The LR2 achieved a test RMSE of 15.366 and a
test MAPE of 9.109%. Table 1 lists the estimated
coefficients for the covariates in LR2.

Regression tree.We referred to the tree model with real-
time information as TR2, which had hyperparameters cp ¼
0.01 and maxdepth ¼ 7. Note that the model trained
without versus with real-time predictors (TR1 versus TR2
[Figure 1]) were identical.

XGBoost. The XGBoost model had the following
hyperparameters: (i) a number of boosting rounds
(num_round) equal to 180, (ii) maximum tree depth
for base learners (max_depth) equal to 3, (iii) boosting
learning rate (eta) equal to 0.1, (iv) L1 regularization
term on weights (alpha) equal to 0.2, and (v) L2
Figure 1. Visualization of TR1 and TR2. TR1 and TR2, are
regression trees that can be interpreted from the visualization
as follows: 1) Start from the root node (“Day versus night”). 2)
Go to the next node if the covariate at the root node is equal to
the value specified by the edge. 3) The predicted value is given
at the leaf node. For example, the predicted arrival count
during a Monday day shift is 208.
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regularization term on weights (lambda) equal to 0.8.
Figure 2 illustrates the top 20 most informative
predictors identified by the selected model, including
day versus night, day of the week, month, holidays,
weather, Google trends for “respiratory infection,”
“disorder,” and “weather,” the daily average number of
patients with comorbidity “AIDS” (acquired
immunodeficiency syndrome) over the last 3 days, and
the percentages of patients with comorbidity “CEVD”

(cerebrovascular disease) over the last 3 days. The final
model achieved a test RMSE of 16.315 and a test
MAPE of 9.582%.

SARIMA and SARIMAX. Among all SARIMA models,
SARIMA (6,0,7) (7,1,3)14 was selected, achieving a test
RMSE of 15.501 and a test MAPE of 8.817%. After
incorporating the external regressors and setting the
seasonal term to 0, the final ARIMAX(3,1,4) model
achieved a test RMSE of 14.656 and a test MAPE of
8.703%. Table 1 lists the estimated coefficients in the
ARIMAX(3,1,4) model. As expected, the coefficients for
the exogenous covariates had the same signs (ie,
directional trends) as those for the final LR2. Moreover,
as explicitly derived in Appendix E2, the coefficients
suggested a positive correlation between the arrival count
during the current shift and the arrival counts during the
previous 2 days.

Comparison of different prediction models. For each
prediction model examined, Table 2 summarizes the RMSE
and MAPE on the training and test sets, and Table 3 lists the
RMSE and MAPE associated with overprediction and
underprediction instances. Among models that did not use
real-time information, the LR1 performed the best on the
Annals of Emergency Medicine 733



Figure 2. Top 20 informative predictors in the final extreme gradient boosting (XGBoost) model.

Use of Real-Time Information to Predict Future Arrivals in the Emergency Department Hu et al
test set. After incorporating real-time information, the
prediction accuracy of the test set can be improved. The
ARIMAX achieved the best performance among models that
used real-time information, improving prediction accuracy
from LR1 by 10.770% (in test RMSE) and 9.598% (in test
MAPE). The LR2 achieved the second-best performance,
with a 6.630% reduction in test RMSE and a 5.381%
reduction in test MAPE compared with LR1.
LIMITATIONS
The limitations of the study include the limited amount

of training data. The training set only contained 1 year of
data with 730 observations, which limited the performance
of more sophisticated models that required substantial
hyperparameter tuning, such as XGBoost. In addition, our
Table 2. Comparison of the selected models.

Model
Utilize real-time
information Training RMSE

LR1 No 14.643

TR1/TR2 No 15.979

LR2 Yes 13.892

XGBoost Yes 8.051

SARIMA Yes 13.902

ARIMAX Yes 13.604

XGBoost, extreme gradient boosting. See the Model Evaluation section for detailed definit

734 Annals of Emergency Medicine
study was performed for a single quaternary care facility in
New York City. A meaningful extension is to apply our
analysis to multiple ED sites and compare the prediction
accuracy and trends. That said, the directional and
structural insights (eg, procedures to develop prediction
models and the value of real-time information) should be
valid across facilities.
DISCUSSION
Our work employed rich real-time information to build

prediction models for ED demand which can be an
integrated part of the 2-stage nurse staffing framework.
Existing studies have applied different prediction techniques
to forecast ED arrivals but have not explored comprehensive
real-time information as done in our study.36 By exploring a
Training MAPE (%) Test RMSE Test MAPE (%)

9.253 16.425 9.627

9.590 16.644 9.353

8.884 15.336 9.109

5.500 16.254 9.455

7.797 15.501 8.817

8.618 14.656 8.703

ion.
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Table 3. Overprediction and underprediction error.

Model

Training set Test set

RMSE MAPE (%) RMSE MAPE (%)

Overprediction Under- Over-(%) Under Over- Under- Over- Under-

LR1 15.242 14.052 10.839 7.752 13.763 18.215 10.769 8.746

TR1/TR2 16.811 15.155 11.336 7.930 14.153 18.423 10.385 8.546

LR2 14.209 13.574 10.114 7.682 13.267 16.961 10.253 8.128

XGBoost 8.132 7.969 6.669 4.331 13.972 17.973 11.005 8.132

SARIMA 15.626 14.759 10.886 7.826 14.681 16.235 9.804 7.887

ARIMAX 13.989 13.241 9.877 7.465 13.528 15.597 9.634 7.868

See the Model Evaluation section for detailed definition.
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novel large set of real-time predictors from the concurrent
patient electronic health records, weather, and Google
trends, we demonstrated that this real-time information was
able to improve demand forecasts compared with base
prediction models. The improvement in prediction accuracy
can be used to develop prediction-driven 2-stage staffing
policies to improve operational efficiency.

Noninferiority of the “Tried-And-True” Prediction
Models

As illustrated by Tables 2 and 3, LR2 and ARIMAX
achieved the best performance among all prediction
models that used real-time information, improving
prediction accuracy by 5% to 1% in RMSE and MAPE
than models without real-time information (LR1). The
worse performance of the regression tree and SARIMA
models was well expected because of their relatively
simple structure, eg, the SARIMA models only took
previous arrival counts into account. On the other hand,
the performance of the more advanced XGBoost model
could be impeded by overfitting, eg, the XGBoost model
was trained with 128 features on 730 observations
(shifts) only. The XGBoost model also had the
disadvantage of lacking interpretability, which was
especially concerning in health care settings because of
the high-stakes decisionmaking. Hence, by establishing
the noninferiority of the “tried-and-true” linear regression
and time series models (embedded with exogenous
variables), we provided the foundation for ED managers
to deploy more interpretable models.

Relevant Real-Time Information in Predicting ED
Demand

Among the extensive amount of real-time information
examined, only a few real-time predictors had predictive
power and were coherently identified by different
prediction models. According to the estimated coefficients
Volume 81, no. 6 : June 2023
by LR2 and ARIMAX (Table 1), ED arrivals were
positively correlated with the patient volume 1 day and 7
days prior. Severe weather, such as snow, precipitation, and
extremely cold or hot temperature, could reduce ED
arrivals. Nevertheless, the ED tended to see more patients
on days with strong wind. In addition, ED arrivals
increased during the weeks when there were more Google
search records for “flu.” Intuitively, the search volume for
“flu” could be seen as the concurrent flu trend information.
Moreover, the total number of patients with a history of
cancer (CANC) over the last 72 hours was positively
correlated with ED arrivals. This trend could be
corroborated by the findings that patients with a higher
weighted sum of Charlson comorbidity indexes were more
likely to return to the ED within 72 hours.33,34 The
selected XGBoost model identified similar significant
predictors (Figure 2), with several new features such as the
Google trends for “disorder,” the percentages of patients
with comorbidities of cerebrovascular disease (CEVD) and
AIDS over the last 3 days.

Implication for Prediction-Driven Staffing
The development of accurate prediction models for ED

demand was an integrated part of our efforts in using
predictive analytics to facilitate better medical resource
planning. As mentioned before, ED staffing generally
involves 2 stages: a base stage, which takes place weeks to
months ahead of the actual shift, and the surge stage, which
happens days to hours before the shift starts. The base
prediction model without real-time information can be
used to guide the base staffing decision, whereas the more
sophisticated prediction model with real-time information
can be used to guide surge staffing decisions. At the base
stage, the staffing cost is lower and more preferable by
nurses based on consistency and predictability of work
hours. However, the accuracy of the prediction model may
be low. On the other hand, at the surge stage, the staffing
Annals of Emergency Medicine 735
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cost is higher, but a more accurate prediction of patients’
demand is available. How to optimally balance the tradeoff
depends on how much real-time predictors improve
prediction accuracy over the base prediction. Our results
provide important quantification of this, which can be
incorporated into the 2-stage staffing framework developed
by Hu et al27 to reduce the staffing cost and ED waiting
times. We note that even relatively small prediction accuracy
improvement, ie, 5% to 11% as found in our study, can lead
to significant cost savings, 11% to 16% as demonstrated in
Hu et al.27 Lastly, we remark that alternative prediction
targets other than shift-level arrival counts could be used in
the prediction-driven staffing framework. In Appendix E3
(available at http://www.annemergmed.com), we
constructed logistic regression models to predict “outlier”
shifts that would have demanded surges and obtained similar
insights on the value of real-time information. That said,
predicting shift-level arrival counts (compared to a binary
indicator on whether there would be demand surge) led to
more actionable staffing implications.

In conclusion, we constructed and evaluated prediction
models with rich real-time information to forecast ED
patient volume. In alignment with the nursing shift structure
in an ED site at a quaternary care facility in New York City,
we aimed to predict the shift-level patient arrival count.
Various prediction techniques were examined, including
linear regression, regression tree, XGBoost, SARIMA, and
(S)ARIMAX. Based on the data from our partner ED site,
linear regression and ARIMAX, when combined with real-
time information, achieved the highest prediction accuracy
measured by RMSE and MAPE. Compared with prediction
models without real-time predictors, we found that
contemporary information was able to improve prediction
accuracy in near-real time. Among the extensive list of real-
time predictors tested, recent patient arrival counts, weather,
Google trends, and concurrent patient comorbidity
information had the highest predictive power. The
effectiveness of real-time information in improving demand
forecasts has policy implications for staffing. The ED
management can use real-time demand forecasts to make
timely adjustments to staffing levels, which, in turn, can
effectively mitigate ED crowding.
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