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The past few years have witnessed a significant expansion in telemedicine adoption by healthcare providers.

On one hand, telemedicine has the potential to increase patients’ access to medical appointments. On the

other hand, due to the limitations of remote diagnostic and treatment methods, telemedicine may be insuf-

ficient for patients’ treatment needs and may necessitate subsequent in-person follow-up visits. To better

understand this tradeoff, we model the healthcare system as a queueing network providing two types of

service: telemedicine and in-person consultations. We assume that an in-person visit guarantees successful

treatment, whereas a telemedicine visit may fail to meet the patient’s treatment needs with a probability

that is contingent on individual patient characteristics. We formulate patients’ strategic choices between

these care modalities as a queueing game, and characterize the game-theoretic equilibrium and the socially

optimal patients’ choices. We further examine how improving patients’ understanding of their telemedicine

suitability through predictive analytics at the online triage stage affects system performance. We find that

increasing information granularity maximizes the stability region of the system but may not always be opti-

mal in reducing the average waiting time. This limitation, however, can be overcome by simultaneously

deploying a priority rule that induces the social optimum under specific conditions. Finally, leveraging real-

world data from a large academic hospital in the United States, we perform a comprehensive case study that

encompasses both the development of a prediction model for in-person follow-up needs and the implemen-

tation of effective information provision and prioritization strategies.

Key words : Telemedicine, Online Triage, Strategic Queueing, Information Granularity, Waiting Times,

Priority Rules

1. Introduction

In recent years, healthcare providers have extensively embraced telemedicine consultations, employ-

ing video and telephone technologies to deliver medical appointments to patients (Friedman AB

and As 2022). Telemedicine presents the opportunity to diminish the risk of exposure to contagious

diseases, enhance appointment accessibility, and alleviate the gap among patients from various

socioeconomic groups (Kalwani et al. 2021, Sunar and Staats 2022, Osmanlliu et al. 2023, Qin et al.

2023a). However, its effectiveness is hindered by diagnostic and treatment limitations, potentially
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resulting in “duplicative care,” namely, the need for subsequent in-person follow-up visits when the

telemedicine consultation fails to substitute for in-person treatment (Liu et al. 2021). Due to these

advantages and drawbacks, both the healthcare literature and media discussions on the impact of

integrating telemedicine frequently present a mix of positive and negative outcomes (Delana et al.

2023, SteelFisher et al. 2023).

The presence of duplicative care may lead to operational inefficiencies by increasing the overall

workload of the system. However, addressing duplicative care following telemedicine encounters

is challenging for two primary reasons. First, patients exhibit significant diversity in their ill-

nesses, concurrent health conditions, and demographic characteristics. Even within primary care

or the same (sub)specialty group, the appropriateness and efficacy of telemedicine treatment vary

considerably among patients (Healthcare Dive 2022). Second, patients often lack the precise infor-

mation and discernment necessary to determine whether a telemedicine consultation can ade-

quately address their care needs. Consequently, when faced with a choice between care modalities—

telemedicine or in-person visit—patients might unknowingly make decisions without sufficient

information, opting for the less suitable visit type. Recognizing these challenges, health systems, as

highlighted by Srinivasan et al. (2020), have acknowledged that “as the system expanded rapidly,

providers also experienced frustration with scheduling patients for video visits rather than in-person

visits when it was inappropriate, and they sought alterations to the triage and scheduling system.”

Similarly, Kobeissi and Ruppert (2022) advocate for improved utilization of remote patient triage

to ensure that telehealth effectively substitutes for in-person care among patients seeking virtual

services.

Meanwhile, the growing accessibility of data and ongoing advancements in statistical learning

techniques have presented a burgeoning opportunity to comprehend patient outcomes stemming

from telemedicine visits. Considerable effort has been dedicated to constructing prediction mod-

els for various patient outcomes after telemedicine consultations, such as subsequent emergency

department (ED) encounters and unplanned hospital readmissions (Shah et al. 2022, Hatef et al.

2022). Despite the increasing focus on predicting patient outcomes from telehealth, the question

of how to effectively integrate predictive information into online triage tools and scheduling pro-

tocols remains relatively underexplored. The challenges faced in this context are twofold. First,

most existing prediction models primarily concentrate on forecasting outcomes such as ED vis-

its or hospitalizations. These models lack direct prediction capabilities regarding the likelihood

of duplicative care, specifically, the need for an in-person follow-up visit (often with the same

provider) after a telemedicine consultation. Second, while it is conceivable to develop a prediction
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model to forecast the probability of requiring an in-person follow-up after a telemedicine visit, the

translation of this additional predictive information into improved system performance—such as

reducing average waiting times or increasing patient throughput—remains unclear. Moreover, since

patients are the primary decision-makers in most ambulatory clinic settings, their choices have

a cascading effect, potentially influencing the decisions of other patients. Consequently, it is not

immediately evident whether providing more predictive information to patients through an online

triage tool will enhance overall system performance.

In this paper, we develop a comprehensive framework to integrate predictive analytics into online

triage and scheduling protocols. Our theoretical model centers on a queueing-game model that

encompasses patients’ choices between two distinct care modalities: telemedicine consultations and

in-person visits. We focus on application settings where the objective of deploying telemedicine

services is to substitute for in-person visits, although this substitution may not be successful for

some patients. To capture the heterogeneity in patients’ suitability for telemedicine treatment,

we assume that the likelihood of a patient requesting an in-person follow-up after a telemedicine

consultation is a random variable, namely, a function of random patient type.

To incorporate predictive analytics into our theoretical framework, we construct a prediction

model leveraging data obtained from a large academic hospital in Maryland, United States. In

January 2021, the hospital started offering telemedicine alternatives for a range of preprocedural

assessment, where remote planning are used to substitute for in-person evaluation. Similar practices

have been documented by Mihalj et al. (2020), Crawford et al. (2021), and Eyrich et al. (2022).

Utilizing encounter-level outpatient data, we develop a logistic regression model to forecast the

probability that a patient will need an in-person follow-up visit subsequent to remote consultation.

Furthermore, to embed the prediction model into the theoretical framework, we assume that for

each patient, the prediction model is able to predict the realized (as opposed to random) probability

of needing an in-person follow-up after telemedicine treatment.

Our study aims to evaluate the potential benefits of offering predictive information to patients

through an online triage tool, utilizing both the prediction model and the queueing-game model.

We specifically analyze the effects of two information granularity regimes—crude and refined—on

system performance. Under the crude information granularity regime, patients lack precise informa-

tion about their specific (realized) types and, consequently, their probability of requiring in-person

follow-up after telemedicine treatment. Here, a patient bases their choice between care modalities

on the distribution of in-person follow-up needs after a telemedicine consultation. In contrast, in

the refined information granularity regime, the prediction model is integrated into the online triage
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tool. Upon entering the system, the patient is informed of their realized type and the probability

that they will need in-person follow-up care as suggested by the prediction model. In both infor-

mation granularity regimes, patients, conditioned on the available information, make decisions to

minimize their expected total waiting time in the system. This total waiting time encompasses

both the waiting time for the initial care and the potential subsequent waiting time in the event

of needing an in-person follow-up visit. Our main contributions can be summarized as follows.

Impact of Information Granularity on Patients’ Behavior. We use the queueing-game

and prediction models to characterize mixed-strategy Nash equilibria in crude and refined infor-

mation regimes. By comparing system performance across these two information setups, we assess

the benefits of offering more detailed information to patients via an online triage tool. First, in

terms of system stability, our findings consistently demonstrate the benefits of providing enhanced

information to patients. Specifically, the refined information granularity regime achieves the maxi-

mal parameter space within which both the in-person and telemedicine queues remain stable under

certain mixed-strategy Nash equilibria. Second, in terms of average waiting time, our analysis

uncovers that in the refined information granularity regime, the average waiting time may be lower

than, equivalent to, or, surprisingly, higher than that in the crude information regime. While the

scenario where increased information leads to longer waiting times is confined to a relatively small

parameter region, this result underscores the need for providers to exercise caution when using

remote triage to influence patients’ behavior.

Mechanism to Achieve the System’s First Best Performance. To gain deeper insights

into the impact of the online triage tool in the refined information granularity regime, we conduct

detailed analysis of the optimal patient routing in a context where decision making is centralized

(as opposed to strategic decision making by the patients), referred to as the system’s “first best

solution.” This first best framework establishes a benchmark for the lowest possible average waiting

time under patients’ strategic decisions. We find that in certain parameter regions, the average wait-

ing time under patients’ equilibrium strategy in the refined information regime is identical to that

under the system’s first best solution. In this regime, it is notable that providing more information

to guide patients’ behavior already achieves the optimal centralized performance. Additionally, in

parameter regions where the system’s first best solution surpasses patients’ choices, we introduce

a priority rule that incentivizes patient preferences through prioritization. This policy effectively

steers the system’s performance towards the first best solution. Importantly, in the seemingly

“problematic” instances where the refined information granularity initially yields a longer average

waiting time than the crude information regime, we demonstrate that employing the priority rule



5

can transform this information disadvantage into an advantage. That is, through the joint provision

of information and appropriate prioritization, the system indeed attains the first best performance.

Practical Insights and Implementation Framework. To facilitate real-world implementa-

tion, we complement the theoretical model by leveraging real-world data from a large academic

hospital in Maryland. Our approach involves two key steps: 1) developing a prediction model to

forecast the need for in-person follow-up after telemedicine consultations, and 2) conducting a com-

prehensive case study to demonstrate model calibration and performance evaluation in a real-world

setting. To the best of our knowledge, we make a pioneering effort in constructing a prediction

model to forecast duplicative care based on real-world data. Based on the case study, we estimate

that providing patients with information through online triage can lead to a remarkable reduction

in average waiting time from 14.48 days to 8.56 days, reflecting a substantial 41.21% decrease. The

average waiting time can be further reduced to 8.13 days (a further 4.99% decrease) by offering

proper prioritization among patients. Importantly, our generic framework can be easily adopted by

other health providers to assess the impact of operational levers, particularly in information design

and scheduling policy, on overall system performance.

1.1. Related Literature

Telemedicine Adoption and Patients’ Behavior. Our work is related to the healthcare

operations management literature that studies how to better manage telemedicine services.

Many papers utilize empirical methods to study patients’ behavior and assess the impact of

telemedicine. For example, Qin et al. (2023b) estimate the causal effect of physician availability on

service incompletion rates. Bavafa et al. (2018) and Lekwijit et al. (2023) analyze the impact of

telemedicine services on the utilization rates of in-person services. Other works evaluate the effect

of telemedicine on other outcomes such as patient adherence and access expansion (Staats et al.

2017, Li et al. 2021, Sun and Wang 2021, Delana et al. 2023).

In addition to empirical investigations, several studies develop analytical models to optimize

operational decisions, such as in managing workload (Saghafian et al. 2018) and determining visit

intervals (Bavafa et al. 2021). Notably, a subset of research employs game-theoretic and queueing

approaches to 1) model the strategic behavior of patients in selecting care modalities, and 2) ana-

lyze and optimize the resulting game-theoretic equilibrium within the system. For instance, Çakıcı

and Mills (2022) utilize a three-stage game-theoretic model to examine the effects of reimburse-

ment policies for both telemedicine and in-person visits. Meanwhile, Rajan et al. (2019) apply

a queueing-game model to investigate how telemedicine technology influences patient utility and

pricing decisions. Ding et al. (2022) examine the influence of binary recommendation (for ED vs.
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general practitioner) on patients’ behavior with partially endogenous queueing dynamics. Addi-

tionally, Liu et al. (2023) use a queueing-game model to study the optimal allocation of service

capacity between different care modalities. Similarly, our paper adopts an analytical framework

that combines queueing and game theory. Despite these parallels, we make a novel and important

contribution to the existing literature by focusing on the joint impact of information design and

priority rules on system performance. Our unified framework encompasses the development of 1)

a prediction model for forecasting in-person follow-up needs after tele-consultation, 2) an informa-

tion provision strategy for conveying predictive information to patients, and 3) a priority rule that

helps orient patients’ equilibrium towards achieving the system’s first best performance.

Information Design for Service Systems. Extensive research has been conducted to exam-

ine the value of information and develop effective strategies for information provision in service sys-

tems. A substantial body of literature considers whether and how to communicate delay announce-

ments to customers; see, e.g., Akşin et al. (2017), Yu et al. (2017, 2022). We refer interested readers

to Ibrahim (2018) for a comprehensive review. In contrast, our study focuses on the practice of pro-

viding the “predicted suitability/efficacy” of telemedicine consultations for patients, introducing a

novel modeling context distinct from those employed in the investigation of delay announcements.

Despite this distinction, our findings reveal interesting parallels with the delay announcement liter-

ature in terms of the managerial insights yielded. As pointed out by Ibrahim (2018), heterogeneity

can be exploited through delay announcements. In our work, we leverage the heterogeneity in

patients’ suitability for telemedicine through information provision and priority rules, resulting in

variations in expected waiting times and fostering incentives for optimal patient choices. Further-

more, aligning with existing research on delay announcement, our study underscores the insight

that more information is not always better. Specifically, we characterize the parameters regimes

where providing more information to patients paradoxically leads to an increase in average waiting

times. Consequently, healthcare providers must exercise discretion in designing the information

disclosed to patients during online triage processes.

Our research is also related to the class of literature addressing the integration of predictive

information into operational decisions. For example, Argon and Ziya (2009), Sun et al. (2022), Singh

et al. (2024) investigate the utilization and design of prediction models for customer classification

in multi-class queueing networks. Hu et al. (2022b) explore how to schedule proactive care based on

predicted patient deterioration. Moreover, Hu et al. (2023) develop a two-stage staffing framework

driven by demand predictions for ED nurse staffing. While sharing common goals with these studies
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in bridging predictive analytics and prescriptive operational decisions, our work distinguishes itself

by focusing on strategic agent behavior and interactions.

Strategic Behavior in Queueing Systems. Our work aligns with the queueing literature

that accounts for customers’ strategic behavior and rational decision making; see, for example,

Naor (1969), Edelson and Hilderbrand (1975), Hassin (1986), Hassin and Haviv (2003), Hassin

(2016), Hassin and Roet-Green (2017, 2021). The majority of existing literature focuses on the use

of pricing as a control lever. A number of papers further incorporate priority into the queueing

context, considering how the service provider should determine entry prices for priority queues, run

priority auctions, and offer different priorities contingent on customers’ disclosure of information

(Mendelson and Whang 1990, Afeche and Mendelson 2004, Afeche et al. 2019, Hu et al. 2022a).

A thorough review of research on priority queues with self-interested customers can be found in

Cui et al. (2023). In contrast with the aforementioned settings, our work considers the joint levers

of information design and priority rules. We examine the impact of incorporating predictive ana-

lytics into the queueing-game framework. These novel mechanisms are particularly pertinent to

healthcare settings where providers often lack direct control over setting payments for patients.

We subsequently evaluate the performance disparity between the game-theoretic equilibrium under

our proposed policies and the steady state under optimal centralized control. This unique perspec-

tive sheds light on the interplay between predictive analytics, strategic behavior, and queueing

dynamics.

Additionally, the tradeoff in service quality between two distinct types of servers, the gatekeeper

and the specialist, is similarly captured by the well-known gatekeeper’s model, as examined by

Shumsky and Pinker (2003), Freeman et al. (2017), Hathaway et al. (2023). Specifically, the gate-

keeper model literature considers a two-tier service system where customers initially enter the

system through the gatekeeper (first-tier server). The gatekeeper then makes strategic decisions

in transferring customers to the specialist (second-tier server). In contrast, our paper considers a

two-channel service system without hierarchical “tiers.” Instead of joining the gatekeeper queue

first, patients in our model make strategic choices between care modalities upon arrival. Conse-

quently, the pivotal agent with strategic decision-making in our model is each patient, as opposed

to the gatekeeper in the gatekeeper framework. A similar two-channel system has been presented

by Roet-Green and Shetty (2022), who model regular and expedited airport security check lines.

However, their focus is on assessing the impact of fees and resource allocation on customer decision-

making, with an emphasis on fairness. In contrast to our paper, they do not consider the likelihood

of unsuccessful substitution between service channels, which is the main motivation of our model.
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1.2. Organization of The Paper

The rest of the paper is organized as follows. In Section 2, we introduce the model and the two

information granularity regimes. We characterize the game-theoretic equilibria of the model and

compare system performance across different information granularity regimes in Section 3 and Sec-

tion 4. In Section 5, we derive the system’s first best solution and analyze the disparity between the

equilibrium under patients’ strategies and the steady state under the optimal centralized solution.

Then in Section 6, we explore the use of priority rules in conjunction with information provision as

a mechanism to orient the patient’s equilibrium towards the first best performance. In Section 7,

we conduct a comprehensive case study that includes the construction of a prediction model, cali-

bration of parameters, and application of theoretical results in a real-world setting. Our conclusion

and future directions are presented in Section 8.

2. The Model

We consider a queueing system (depicted in Figure 1) with continuously distributed patient types

and two distinct provider care modalities—telemedicine and in-person visits—in which providers

differ in their treatment competency. Patients arrive to the system according to a Poisson pro-

cess with rate λ ∈ R+ and with their types uniformly distributed over the real interval [0,1]. To

capture heterogeneous patients’ suitability for telemedicine visits, we let f : [0,1]→ [0,1] be a map-

ping between the patient type and the likelihood of not receiving sufficient treatment through

telemedicine. Specifically, for a patient of type t ∈ [0,1], a telemedicine visit fails to fulfill their

treatment requirement with probability f(t), upon which the patient needs an in-person follow-up

visit and joins the queue for the in-person provider. We assume that f is strictly increasing. That is,

a patient with a larger type value has a higher chance of encountering an unsatisfactory treatment

episode through telemedicine. In addition, we assume that f(0) = 0 and f(1) = 1. Namely, with

probability 1, the “least severe” patient (of type 0) can be successfully treated by telemedicine, and

the “most severe” patient (of type 1) needs an in-person follow-up after telemedicine visits. More-

over, we assume a fully Markovian system, where the service rates of telemedicine and in-person

visits are µ1, µ2 ∈R+, respectively. Within each queue (for telemedicine or in-person visits), patients

are treated on a first-come-first-served basis (with the exception of Section 6, where priority rules

are considered).

By model construction, we assume that the probability of incomplete telemedicine treatment is

the random variable X = f(U) for U ∼Uniform[0,1]. This model formulation captures a wide range

of probability distributions for X due to the flexibility in the functional form of f . In particular,
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let FX denote the cumulative distribution function of X. Based on the inverse transform sampling

method, it holds that X
d
= f(U) for f := F−1

X . Hence, our assumptions on f are equivalent to

assuming that F−1
X is continuous and strictly increasing.

Patients are self-interested and rational utility maximizers who, upon arrival, choose to join

either the queue for telemedicine visits or the queue for in-person visits based on the expected

steady-state utilities. To model patient utility, we let R ∈R+ denote the value of service and c∈R+

denote the cost of waiting per unit time in the queue for each patient. Then a patient’s net utility

from receiving service is given by

R− c ·E[W ],

where W is the steady-state total waiting time that includes both the initial waiting time for the

telemedicine or in-person visit, and, if applicable, the subsequent waiting time for the in-person

follow-up visit.

We conclude this subsection by noting that we do not incorporate patients’ balking behavior

into the model. That is, we assume that R is sufficiently large so that patients receive non-negative

utility through either an in-person or a telemedicine visit, aside from the probability of needing

in-person follow-up after insufficient telemedicine treatment. This assumption adds complexity to

the stability conditions of the model, as the stability of the queues relies on patients’ strategic

behavior induced by the information design and priority rules; see our formal definition in Section

2.3. Our subsequent analysis aims to shed light on how information provision and priority rules

impact the parameter space in which the system maintains stability.

Figure 1 Patients’ Decision and Flow
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2.1. Information Granularity Regimes

To investigate the impact of information on patients’ choices and system performance, we consider

two information granularity regimes, which we refer to as “crude” and “refined,” respectively.

In the crude information regime, a patient has knowledge of the probability distribution associ-

ated with the likelihood of needing in-person follow-ups after a telemedicine visit, specifically, the

distribution of X. However, patients are not privy to their individual realizations of X. Recall that

X = f(U), where U ∼Uniform[0,1]. This assumption equivalently implies that patients are aware

of the functional form of f but are unaware of their specific realized patient types.

In contrast to the crude information regime, the refined information granularity regime assumes

that patients have knowledge not only of the probability distribution of X but also its specific

realization linked to their individual care episode. In other words, patients are aware of not only

the functional form of f but also of their realized patient types.

2.2. Patients’ Strategies

We allow the set of admissible patient strategies to be type-dependent mixed strategies. In par-

ticular, a patient of type t ∈ [0,1] chooses telemedicine consultation with probability g(t) and

selects in-person visit with probability 1− g(t), for some mapping g : [0,1]→ [0,1]. Given patients’

strategies g, the steady-state total waiting time for patient of type t is given by

W (g, t) := 1Tele(g(t))
(
W1(g)+1Follow−up(t)W2(g)

)
+
(
1−1Tele(g(t))

)
W2(g), (1)

and the average (across all patients) steady-state total waiting time in the system is

E [W (g,U)] . (2)

In Equation (1) above, the indicator function 1Tele denotes whether the patient chooses telemedicine

service. The indicator function 1Follow−up denotes whether an in-person follow-up visit is needed

after the telemedicine consultation. In addition, W1 and W2 are steady-state waiting times at the

telemedicine queue and the in-person queue, respectively. To better understand how the objective

is calculated, note that the first term in Equation (1) corresponds to the total steady-state waiting

time in the system after choosing the telemedicine service, which consists of both the waiting at the

telemedicine queue and the subsequent waiting at the in-person queue if an in-person follow-up is

needed. In analogue, the second term in Equation (1) corresponds to the total steady-state waiting

time in the system after choosing the in-person service, which is simply the steady-state waiting

time at the in-person queue. We next define each patient’s self-interested optimization problem to

determine his/her joining strategy in the two systems respectively.
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In the crude information regime, a patient of type U sets the probability of using the telemedicine

service, taking into account the randomness in his/her type (and thus in the probability of needing

an in-person follow-up after telemedicine). In particular, given the other patients’ strategies g :

[0,1]→ [0,1], the self-interested optimization problem for patient of type U is given by

min
p

EU

[
1Tele(p)

(
W1(g−U , p)+1Follow−up(p)W2(g−U , p)

)
+
(
1−1Tele(p)

)
W2(g−U , p)

]
, (3)

where W1(g−U , p) denotes the steady-state waiting time in the telemedicine queue given that a

patient of type U chooses telemedicine with probability p and other patients (of type t for t ̸=U)

select telemedicine based on strategies mapped by the correspondence g. Note that the expectation

in Equation (3) is taken with respect to the following three sources of uncertainty: the type of the

focal patient, the patient’s choice of telemedicine or in-person visit, and queueing dynamics. We

add the subscript in EU to highlight the uncertainty in the patient type U , which is in contrast to

the patient’s self-interested optimization in the refined information regime that we introduce next.

In the refined information regime, patients know the realization of their types and thus the cor-

responding probabilities of needing in-person follow-up visits after tele-consultation. In particular,

given the other patients’ strategies g : [0,1]→ [0,1], the self-interested optimization problem for a

patient of type t∈ [0,1] is given by

min
p

E
[
1Tele(p)

(
W1(g−U , p)+1Follow−up(U)W2(g−U , p)

)
+
(
1−1Tele(p)

)
W2(g−U , p)

∣∣U = t
]
, (4)

where the expectation in Equation (4) is taken with respect to the selection decision of telemedicine

and queueing dynamics, conditioned on the type of the focal patient.

In either information granularity regime, we assume that patients with identical perceived type

information employ the same strategy. In Section 3 below, we characterize the unique mixed strat-

egy Nash equilibrium for the patients’ self-interested problems in Equations (3) and (4). We then

compare the equilibrium system performance in the crude and refined information regimes in

terms of 1) the expected steady-state total waiting time (characterized in Equation (2)) under the

equilibrium patient strategies, and 2) the system stability region, which we introduce in the next

subsection.

2.3. System Stability Region

In our model, the conditions to ensure system stability are highly non-trivial because 1) there exist

possible needs for in-person follow-up visits after telemedicine treatment, 2) patients do not balk or

abandon, and 3) the stability of the queues depends on the patient strategy g. For a given patient
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strategy g, we say that the queueing system is stable if and only if it admits a well-defined steady

state for the joint queue length process.

Before characterizing how the system stability condition is influenced by g, we first discuss two

necessary conditions for system stability in Assumption 1, which is assumed throughout the paper.

Assumption 1 The following conditions are necessary for system stability: 1) µ1 + µ2 > λ, and

2) µ2 >λE[X].

To interpret Assumption 1, note that the first condition ensures system stability when

telemedicine services can fully substitute for in-person visits, namely, there need not be any in-

person follow-up visits after telemedicine consultations. For the second condition, note that for a

given patient strategy g, the arrival rate at the in-person visit is λ(
∫ 1

0
(g(x)f(x) + 1− g(x))dx),

where the integrand is decreasing in g(x), x ∈ [0,1]. In addition, since g(x) ≤ 1 for all x ∈ [0,1],

it is straightforward to see that the arrival rate for the in-person queue is lower bounded by

λ(
∫ 1

0
f(x)dx). Therefore, a necessary stability condition is to have µ2 >λ(

∫ 1

0
f(x)dx) = λE [f(U)] =

λE [X].

We next characterize the system stability condition for any arbitrary patient strategy g.

Lemma 1 (System stability condition) Given patient strategy g : [0,1] → [0,1], the system

possesses a well-defined steady state if and only if:

µ1 −λ

∫ 1

0

g(x)dx> 0

and

µ2 −λ

(∫ 1

0

(g(x)f(x)+ 1− g(x))dx

)
> 0.

Finally, for a specified information granularity regime, we say that the queueing system is sta-

ble in Nash equilibrium if there exists a mixed strategy g such that 1) the system is in mixed

strategy Nash equilibrium under g, and 2) the system is stable with respect to g. We define

Scrude := {(λ,µ1, µ2, f) ∈ R3
+ ×C[0,1]} and Srefined := {(λ,µ1, µ2, f) ∈ R3

+ ×C[0,1]} such that for

each quadruple of model primitives (λ,µ1, µ2, f)∈ Sj where j ∈ {crude, refined}, the system is sta-

ble under Nash equilibrium. As mentioned, to facilitate the comparison of information granularity

regimes, one of the metrics we consider is the system stability region, which essentially involves

comparing Scrude and Srefined. Explicit characterization of the stability regions Scrude and Srefined

is provided in Corollaries 1 and 2 in Section 3 after we analyze patients’ strategies and system

equilibria. Here, we refer to Scrude and Srefined as “system stability regions,” diverging slightly
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from conventional terminology. While traditional queueing literature typically emphasizes the sta-

bility of queues under specific strategies, our criteria extend beyond queue stability to ensure the

attainment of game-theoretic equilibrium. Therefore, the stability region encompasses both the

conventional notion of stability in queueing theory and the requirement for equilibrium in game

theory. It is noteworthy that these conditions may overlap, as is the case in our model; see details

in Section 3 below.

3. Patient Equilibrium

In this section, we characterize patients’ equilibrium strategies and system performance in the

crude and refined information granularity regimes, respectively.

3.1. The Crude Patient Equilibrium

In the crude information regime, patients know the functional form of f but do not know the

realization of their type U . The corresponding self-interested optimization problem for a patient of

type U is formulated in Equation (3). Recall that by assumption, patients with identical perceived

type information employ the same strategy. In the crude information regime, all patients have the

same information, and thus, they apply the same mixed strategy of selecting telemedicine. Hence,

it is without loss of generality to restrict to patient strategies of the form g : [0,1]→ [0,1] such that

g(U) = p, for some p∈ [0,1].

By Lemma 1, there exists a strategy in the aforementioned family of patient strategies parame-

terized by a single probability under which the system is stable if and only if

µ1 −λp> 0 and µ2 −λ(1− p+ pE[X])> 0 for some p∈ [0,1],

which, by basic mathematical rearrangements, can be equivalently expressed as

µ2 >λ−µ1 +µ1E[X]. (5)

Assuming that Equation (5) holds, we say that the system is in mixed strategy Nash equilibrium

under patient strategy g∗ : [0,1]→ [0,1] if and only if there exists p∗ ∈ [0,1] such that

g∗(U) = p∗ (6)

and

p∗ = argmin
p

EU

[
1Tele(p)(W1(g

∗
−U , p)+1Follow−up(U)W2(g

∗
−U , p))+ (1−1Tele(p))W2(g

∗
−U , p)

]
. (7)

The next proposition establishes the existence of a unique mixed strategy Nash equilibrium when

patients’ information granularity is crude.
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Proposition 1 Suppose that Equation (5) holds. In the crude information granularity regime,

there exists a unique mixed strategy Nash equilibrium that satisfies conditions (6) and (7) with p∗

characterized as follows:

1. When λ+(1−E[X])µ1 ≤ µ2, all patients select the in-person visit, i.e., p∗ = 0;

2. When µ1 >λ and µ2 ≤ (1−E[X])µ1−(1−2E[X])λ, all patients choose the telemedicine service,

i.e., p∗ = 1;

3. Otherwise, each patient chooses the telemedicine service with probability

p∗ =
(1−E[X])µ1 +λ−µ2

2λ(1−E[X])
.

Based on the expression of p∗ in Proposition 1, it can be derived that the crude patient equilib-

rium p∗ increases with respect to µ1 and decreases with respect to µ2 (Lemma B.1 in Appendix

B.4). Moreover, recall that Equation (5) presents the condition under which the queues are stable

under some probabilistic type of patient strategy. Proposition 1 further establishes that the system

attains a unique game-theoretic equilibrium under this strategy. As formalized in the following

corollary, it immediately follows that Scrude coincides with the parameter space characterized by

Equation (5).

Corollary 1 It holds that Scrude = {(λ,µ1, µ2, f) : µ2 >λ−µ1 +µ1E [X]}.

3.2. The Refined Patient Equilibrium

In the refined information regime, patients know not only the functional form of f but also the

realization of their type U . The corresponding self-interested optimization problem for a patient

of type U = t is presented in Equation (4). Since the probability of needing in-person follow-up

visits after telemedicine treatment, captured by the function f , is strictly increasing, it is intuitive

to expect patients’ equilibrium mixed strategies g to be decreasing, namely, g(t1)≤ g(t2) for t1 ≤

t2. The next lemma formalizes this intuition and further establishes that the equilibrium mixed

strategies must be of a threshold type.

Lemma 2 In the refined information granularity regime, if g : [0,1]→ [0,1] is an equilibrium mixed

strategy, then g is threshold-type. That is, there exists some threshold t∗ ∈ [0,1] such that g(t) = 1

for t≤ t∗, and g(t) = 0 for t > t∗.

Based on Lemma 2, it is without loss of generality to restrict attention to the family of threshold-

type patient’s strategies. Furthermore, by Lemma 1, there exists a threshold-type strategy under

which the system is stable if and only if

µ1 −λt > 0 and µ2 −λ(1− t+F (t))> 0 for some t∈ [0,1], (8)
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where F : [0,1] → [0,1] is defined as F (t) =
∫ t

0
f(x)dx, denoting the proportion of patients who

originally join the telemedicine service but end up needing in-person care. Following elementary

algebraic rearrangements, the conditions in Equation (8) are equivalent to

µ2 >λ−µ1 +λF (µ1/λ) if µ1 ≤ λ. (9)

Assuming that Equation (9) holds, we say that the system is in mixed strategy Nash equilibrium

under patient strategy g∗ : [0,1]→ [0,1] if and only if there exists t∗ ∈ [0,1] such that

g∗(t) =

{
1 if t≤ t∗

0 o.w. ,
(10)

and for all t∈ [0,1],

t∗ = argmin
p

E
[
1Tele(p)

(
W1(g

∗
−U , p)+1Follow−up(U)W2(g

∗
−U , p)

)
+
(
1−1Tele(p)

)
W2(g

∗
−U , p)

∣∣U = t
]
.

(11)

The next proposition establishes the existence of a unique mixed strategy Nash equilibrium when

patients’ information granularity is refined.

Proposition 2 Suppose that Equation (9) holds. In the refined information granularity regime,

there exists a unique mixed strategy Nash equilibrium that satisfies conditions (10) and (11), with

t∗ characterized as follows:

1. When λ+µ1 ≤ µ2, all patients select the in-person visit, i.e., t∗ = 0;

2. Otherwise, the threshold t∗ satisfies 0< t∗ < 1 and is the unique solution to

µ2 − (1− t+F (t))λ= (1− f(t))(µ1 −λt).

Based on the characterization of t∗ in Proposition 2, it can be shown that the refined patient

equilibrium t∗ is increasing in µ1 and decreasing in µ2, as formalized in Lemma B.1 in Appendix

B.4. Furthermore, Equation (9) delineates the condition under which both queues maintain stabil-

ity under some threshold type of patient strategy in the refined information regime. Proposition 2

further guarantees the attainment of a unique game-theoretic equilibrium under this strategy. Con-

sequently, the following corollary directly follows, indicating that Srefined aligns with the parameter

space characterized by Equation (9).

Corollary 2 It holds that Srefined = {(λ,µ1, µ2, f) : µ2 >λ−µ1 +λF (µ1/λ) if µ1 ≤ λ}.
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4. Impact of Information Granularity

In this section, we assess whether providing more information to patients, e.g., by employing

predictive analytics in the online triage tool, can improve the system performance. In particular,

we compare the patients’ equilibria in the crude and refined information granularity regimes in

terms of system stability and average patient waiting time.

4.1. Impact of Information Granularity on System Stability

In terms of system stability, it is consistently beneficial to provide each patient with more granular

information about their likelihood of needing in-person follow-up after telemedicine. As established

by Proposition 3 below, the refined information regime, in comparison to the crude information

regime, possesses a strictly larger set of parameters over which the system admits a mixed strategy

equilibrium with stable queues.

Proposition 3 We have Scrude ⊂Srefined.

Figure 2 provides an illustration of Proposition 3, where we plot the parameter space in two

dimensions with respect to µ1 and µ2. We set λ = 0.5 and f(t) = t (which leads to E[X] = 0.5).

In the figure, the yellow region corresponds to Scrude, with boundaries parameterized by (µ1, µ2)

subject to µ2 = λ−µ1 +µ1E[X] and µ2 = λE[X]. For each combination of µ1 and µ2 in the yellow

region, there exists a unique patient equilibrium with stable queues in the crude information regime.

In comparison, the gridded region corresponds to Srefined, whose boundaries are parameterized

by (µ1, µ2) subject to µ2 = λ− µ1 + λF (µ1/λ) and µ2 = λE[X]. For each pair of µ1 and µ2 in the

gridded area, the system possesses a unique patient equilibrium with stable queues in the refined

information regime. As established in Proposition 3, the gridded area is strictly larger than the

yellow area: When µ1 <λ, the boundary of the yellow region is strictly above that of the gridded

region, as λ− µ1 + µ1E[X] > λ− µ1 + λF (µ1/λ); when µ1 ≥ λ, the boundaries of the yellow and

gridded areas coincide with each other.

4.2. Impact of Information Granularity on Waiting Time

In Section 4.1 above, we have established that having patients make better-informed self-interested

choice between care modalities leads to an expanded stability region for the system. In this section,

we further compare the average steady-state waiting times under the patient crude and refined

equilibria for fixed model parameters.

To avoid trivial comparison, we focus on the parameter region where the system is stable under

some mixed strategy patient equilibrium for both the crude and refined information regimes,
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Figure 2 Comparison Between the Refined and Crude Stability Conditions

namely, we focus on the model parameters in Scrude∩Srefined, for Scrude characterized in Corollary

1 and Srefined characterized in Corollary 2. We denote hc(p∗) and hr(t∗) as the average steady-state

waiting times in equilibrium under the crude and the refined information regimes, respectively.

Theorem 1 Fix λ and f . For any µ1, there exists µ̃2(µ1) such that the following holds:

1. When µ2 ≥ µ1 +λ, the equilibrium strategies and expected steady-state waiting times satisfy

p∗ = t∗ = 0 and hc(p∗) = hr(t∗);

2. When µ1 +λ> µ2 ≥ µ̃2(µ1), the expected steady-state waiting times satisfy

hc(p∗)≥ hr(t∗),

and there exists µ̄2(µ1)∈ (µ̃2(µ1), µ1 +λ) such that the equilibrium strategies satisfy

(a) 0≤ p∗ < t∗ for µ2 > µ̄2(µ1), and (b) p∗ ≥ t∗ > 0 for µ2 ≤ µ̄2(µ1);

3. When µ̃2(µ1)>µ2 >λE[X], there exist equilibrium strategies and expected waiting times that

satisfy

p∗ > t∗ and hc(p∗)<hr(t∗).

The implicit expressions for µ̃2(µ1) and µ̄2(µ1) in Theorem 1 are provided in Appendix B.6. In

addition, we emphasize that in Case 3 of Theorem 1, while we only formally prove the existence

of such orderings between patient strategies and average steady-state waiting times (i.e., p∗ > t∗

and hc(p∗)<hr(t∗)), we conjecture that such orderings hold across the entire parameter region for

Case 3, specifically when µ̃2(µ1)>µ2 >λE[X]. Unfortunately, due to limited analytical tractability,
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Figure 3 Average Waiting Time Comparison Under Refined and Crude Equilibria for Fixed µ1

we are unable to provide a formal proof for this conjecture. Nevertheless, extensive numerical

experiments consistently support the same conclusion.

Figure 3 provides a visualization of the four regions characterized in Theorem 1 as the value of

µ2 varies. In particular, Case 1 corresponds to the parameter regime where the in-person service

rate is sufficiently high (µ2 > µ1 + λ) so that all patients opt for in-person services in both the

crude and refined information granularity regimes (p∗ = t∗ = 0). As a result, the expected waiting

times in equilibrium are equivalent in both information regimes (hc(p∗) = hr(t∗)). Compared to

Case 1, Cases 2 and 3 have relatively low in-person service rates, resulting in non-negligible propor-

tions of patients who select telemedicine services. In Case 2a, where the in-person service rate falls

below µ1 +λ but remains above µ̄2(µ1), the equilibrium in the refined information regime induces

more patients (with a total proportion equal to t∗) to select telemedicine. The refined information

regime also results in strictly shorter expected steady-state waiting time in equilibrium than the

crude information regime. In Cases 2b and 3, the in-person service rate is lower than µ̄2(µ1), and,

unlike Case 2a, fewer patients select telemedicine in the refined information equilibrium than in the

crude information equilibrium (p∗ > t∗). Furthermore, while the expected steady-state waiting time

in equilibrium is shorter in the refined information regime in Case 2, Case 3 exhibits alternative

orderings of the expected waiting times in the crude and refined information regimes. Specifically,

Case 3 has patients experience less waiting on average when the available information is crude

(hc(p∗) < hr(t∗)). Notably, Case 3 characterizes a counterintuitive phenomenon in which provid-

ing patients with more information about their likelihood of needing in-person follow-ups after

telemedicine “backfires” and increases the expected steady-state waiting time in equilibrium. In

other words, under the refined information equilibrium in Case 3, although patients make better-

informed self-interested decisions in choosing care modalities, the overall system performance (in

terms of the average waiting time) turns out to be worse.

For any fixed µ1, Theorem 1 above compares the choices made by patients regarding care modali-

ties and the expected waiting times in equilibrium across four regions delineated by λE [X], µ̃2(µ1),

µ̄2(µ1), and µ1 + λ. In complement to Theorem 1, Proposition 4 further asserts the continuity of

the mappings µ̃2(µ1) and µ̄2(µ1) with respect to µ1.
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Proposition 4 Let µ̄2(·) and µ̃2(·) be as defined in Theorem 1. It holds that µ̄2(·) and µ̃2(·) are

continuous.

It follows from Proposition 4 that the two-dimensional parameter space with respect to µ1 and

µ2 can be partitioned into four regions in analogue to those characterized in Theorem 1. In each

region of the two-dimensional parameter space, the orderings of patient choices (p∗ and t∗) and

expected equilibrium waiting time (hc(p∗) and hr(t∗)) stay the same as those characterized in

Theorem 1. We demonstrate such partition in Figure 4, on a (µ1, µ2) grid, when λ= 0.5, f(t) = t1/5,

and E[X] = 5/6. Note that the parameter space is divided into four regions colored in white, green,

blue, and red. The white region at the left bottom denotes the unstable parameter regime (outsides

Scrude∩Srefined) which we do not consider for comparison. For the other regions, there exist unique

patient equilibria with stable queues in both the crude and refined information regimes, which

enables non-trivial comparison of the patients equilibrium strategies and the corresponding average

steady-state waiting times. In particular, the green region corresponds to Case 1 in Theorem

1, where all patients opt in for the in-person service in both information granularity regimes,

thus leading to equivalent average waiting times. The blue region corresponds to Case 2 with

hc(p∗) ≥ hr(t∗) in Theorem 1. Lastly, the red region corresponds to Case 3 with hc(p∗) < hr(t∗)

in Theorem 1, which exhibits the counterintuitive phenomenon that providing patients with more

information leads to increased average waiting time in equilibrium. Intuitively, we observe that in

the red region, the telemedicine service rate is much higher than the in-person service rate. In the

crude information regime, p∗ tends to approach or equal 1. However, upon receiving additional

information, some patients reconsider and opt for in-person visits, leading to t∗ < p∗. This influx

of patients seeking in-person visits subsequently elevates the average waiting time in the in-person

queue. Consequently, this also contributes to the waiting time for patients requiring in-person

follow-ups after telemedicine. As a result, the overall average waiting time of the system surpasses

that in the crude information regime, exemplifying the “tragedy of the commons.”

5. System’s First Best Solution

In the system’s first best problem, the system manager makes a centralized routing decision for each

patient, aiming to minimize the average total waiting time in the system. In terms of information

availability, we assume that the system manager knows the realization of each patient’s specific

type and the corresponding likelihood of requiring an in-person follow-up visit subsequent to a

telemedicine appointment. It is important to note that this assumption is without loss of generality,

as having more detailed information about patients’ types and follow-up probabilities leads to

equivalent or strictly improved centralized decision-making.
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Figure 4 Average Waiting Time Comparison Under Refined and Crude Equilibria

Recall from Equation (1) that given patients’ strategies g, the steady-state total waiting time

for patient of type U = t is given by W (g, t), which is a random variable. The average steady-state

total waiting time in the system is E [W (g,U)], where the expectation is taken with respect to both

queueing dynamics and random patient type U . The system’s first best problem is given by

min
g

E [W (g, t)] . (12)

For the system’s first best problem (12), we show that similar to the refined equilibrium, the

system’s first best solution is also a threshold-type solution; see the formal statement in Proposition

5 below. That is, it is without loss of optimality to restrict to the family of threshold policies

under which the system manager routes patients with type values below a certain threshold to

telemedicine consultations and routes the rest of the patients to in-person service. Solving the first

best problem (12) is then equivalent to finding the optimal threshold. Rewriting problem (12) by

restricting to threshold strategies, we get

min
t∈[0,1]

hfb(t) :=
t

µ1 −λt
+

1− t+F (t)

µ2 −λ(1− t+F (t))
, (13)

where hfb(t) denotes the first best average steady-state waiting time across all patients under a

threshold-type routing policy with threshold t.

Because both the patients’ equilibrium strategy in the refined information granularity regime and

system’s first best solution are threshold-type, it follows from the analysis in Section 3.2 that the

system stability condition under centralized routing is identical to that in the refined information

granularity regime, as summarized in Corollary 3.
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Corollary 3 There exists some centralized routing strategy g under which the system is stable if

and only if (λ,µ1, µ2, f)∈ Srefined.

Recall from Section 3.2 that F (t) =
∫ t

0
f(x)dx, which denotes the proportion of patients who

originally join the telemedicine service but end up needing an in-person follow-up visit under the

t-threshold strategy. Based on this definition, Proposition 5 states the optimal solution to the

system’s first best problem.

Proposition 5 For (λ,µ1, µ2, f) ∈ Srefined, the system’s first best solution is threshold-type, with

a unique optimal threshold t̄ such that patients with t < t̄ are routed to the telemedicine queue and

patients with t≥ t̄ are routed to the in-person queue. In addition, t̄ satisfies:

1. When λ+
√
µ1µ2 ≤ µ2, t̄= 0, i.e., routing all patients to the in-person queue;

2. When λ+
√
µ1µ2 >µ2, 0< t̄ < 1, and t̄ is the unique solution to

µ1(µ2 − (1− t+F (t))λ)2 = µ2(µ1 −λt)2(1− f(t)).

5.1. Comparison of System’s First Best Solution and Patients’ Equilibrium

In this section, we compare the patients’ equilibrium in the refined information granularity regime

to the system’s first best solution.

As the equilibrium strategy of the patients and the optimal centralized solution of the system

both adopt threshold-based policies, our initial comparison involves assessing the thresholds t∗

and t̄. Recall that these thresholds characterize, respectively, the strategy adopted by patients in

equilibrium and the system’s first best solution.

To facilitate the comparison, we introduce the notation t̂ := f−1(1− µ2/µ1). In essence, t̂ rep-

resents the patient type who is indifferent in selecting either service when no other patients are

present in the system, namely, 1/µ1 + f(t̂)/µ2 = 1/µ2. With the aid of t̂, we establish criteria for

the two thresholds in Proposition 6 below.

Proposition 6 The following comparison holds for t∗ and t̄:

1. When µ1 ≤ µ2, t
∗ ≤ t̄;

2. When µ1 >µ2,

(a) If 1− t̂+F (t̂)− (1− f(t̂))t̂ < 0, t∗ > t̄;

(b) If 1− t̂+F (t̂)− (1− f(t̂))t̂= 0, t∗ = t̄;

(c) If 1− t̂+F (t̂)− (1− f(t̂))t̂ > 0, t∗ < t̄.
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Proposition 6 immediately implies that if the following sufficient condition holds, there are fewer

patients opting for the telemedicine service than the number desired by the system’s first best

solution, i.e., t∗ ≤ t̄:

1− t+F (t)− (1− f(t))t≥ 0 ∀t∈ [0,1]. (C)

To provide some intuitive interpretation of condition (C), we note that the functional forms of f

that meet this condition typically possess a higher average probability of needing in-person follow-

ups. For instance, the function f(t) = t2 satisfies condition (C), resulting in an average follow-up

probability equal to E [U 2] = 1/3. Moreover, any function f where f(t)≥ t2 for all t ∈ [0,1] yields

a higher average follow-up probability than E [U 2] and therefore fulfills the condition. Conversely,

a function such as f(t) = t4 leads to a relatively lower expected follow-up probability equal to

E [U 4] = 1/5, thereby violating this condition. It follows from the intuition behind condition C

that when the average follow-up probability is relatively high, patients tend to exhibit more risk

aversion in their individual decisions regarding telemedicine usage. Consequently, a smaller portion

of patients utilizes telemedicine in the patients’ equilibrium compared to the system’s first best, i.e.,

t∗ ≤ t̄. In contrast, when the average follow-up probability is relatively low, patients lean towards

being more risk-seeking in their preference for telemedicine. As a consequence, the proportion of

patients using telemedicine in the patients’ equilibrium surpasses the optimal level observed in the

system’s first best, namely, t∗ > t̄.

Figure 5 illustrates Proposition 6, depicting the comparison between t∗ and t̄ in the two-

dimensional parameter space defined by (µ1, µ2). In particular, Figure 5(a) and Figure 5(b) corre-

spond to two distinct functions f . Figure 5(a) represents the scenario where f satisfies condition

(C), while Figure 5(b) illustrates a situation where condition (C) is violated. For Figure 5(a), the

parameters are set as λ= 0.5, f(t) = t, µ1 ∈ [0,2], and µ2 ∈ [0,2.915]. Meanwhile, for Figure 5(b),

the parameters are specified as λ= 0.5, f(t) = t4, µ1 ∈ [0,2], and µ2 ∈ [0,2.396]. We make the fol-

lowing observations. First, the white regions in Figure 5 signify system instability. In the remaining

parameter space, when µ1 ≤ µ2, we have t
∗ ≤ t̄, which corresponds to Case 1 in Proposition 6. Oth-

erwise, the relationship between t∗ and t̄ depends on the properties of f . In Figure 5(a), where f

satisfies condition (C), we consistently have t∗ ≤ t̄. In contrast, Figure 5(b) demonstrates a scenario

where f satisfies the assumption of Case 2(a) in Proposition 6. Consequently, a continuous blue

region emerges where t∗ > t̄. It is noteworthy that the presence of the blue region in Figure 5(b)

is not incidental. For any general functional form of f , it can be derived that the region where

t∗ > t̄ is consistently bounded by two linear lines expressed as µ2(µ1) := (1−f(v1))µ1 and µ2(µ1) :=

(1− f(v2))µ1. Here, v1 and v2 represent the two distinct roots of 1− v+F (v)− (1− f(v))v= 0.



23

(a) f satisfies condition C (b) f violates condition C

Figure 5 Comparison of t∗ and t̄ in the Refined Information Equilibrium and System’s First Best

6. Coordination Mechanism by Priority Rules

In this section, we focus on the parameter regime where the system’s first best solution strictly

outperforms the patients’ equilibrium in the refined information granularity regime, i.e., µ2 <

λ +
√
µ1µ2. We explore a family of priority rules as a potential mechanism to induce waiting-

time incentives for patients’ choices, aiming to guide the system towards its first best solution.

More specifically, in the sub-region where the patients’ equilibrium in the refined information

granularity regime results in longer average waiting times compared to that in the crude information

granularity regime, our objective is to implement the mechanism to transform the information

disadvantage into an advantage. Additionally, within the rest of the parameter regime, where

providing patients with more information leads to shorter average waiting times than the waiting

times in the equilibrium without information provision, we leverage the mechanism to further

minimize or close the performance gap and move towards the system’s first best solution.

To design the priority mechanism, we observe from Proposition 6 in Section 5.1 that there exist

two possible orderings between the thresholds of selecting telemedicine in the patients’ equilibrium

and the system’s optimal solution. Depending on the model primitives, the threshold in the patients’

equilibrium can be higher or lower than that in the system’s optimal solution. Given these two

possible scenarios, the design of the priority rule aims to encourage patients to choose the modality

that is more desired under the first best solution by reducing the overall waiting time in the system

for those patients.

To formalize this idea, we consider a family of priority rules that are characterized by a probability

parameter 0≤ q ≤ 1, where q is a control variable to be optimized. Although parameterized by a
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single parameter q, the direction of assigning priority is contingent upon the relationship between

t∗ and t̄. Specifically, if the number of patients choosing telemedicine service is fewer than that

desired by the system’s first-best solution (i.e., t∗ < t̄), priority is allocated to in-person follow-up

visits to encourage patients to choose telemedicine. In particular, patients requiring an in-person

follow-up visit post telemedicine are prioritized with probability q, i.e., moved to the front of the in-

person queue, independently and identically (i.i.d). Conversely, if more patients choose telemedicine

service than in the first-best solution (i.e., t∗ > t̄), priority is given to initial in-person visits to

encourage patients to opt for the in-person modality. That is, patients who initially choose in-person

visits are prioritized with probability q in an i.i.d manner. By construction, we assign no priority

when q = 0 and full priority when q = 1. Moreover, assigning a value 0 < q < 1 leads to partial

prioritization, where, on average, a proportion q of the eligible patient population receives priority.

The endogeneity of q enables us to offer varying levels of waiting-time incentives, contingent upon

the difference between t∗ and t̄.

We explore the combined impact of information provision and prioritization. Specifically, in

the refined information granularity regime, we formally show in the proof of Theorem 2 below

that under any priority rule parameterized by q ∈ [0,1], the system induces threshold-type patient

equilibria. Next, we consider all possible patient equilibria achieved by the family of priority rules

with q ∈ [0,1] and identify the equilibrium with the shortest average waiting time. We denote this

shortest average waiting time by hp(q∗), where q∗ represents the parameter of the corresponding

priority rule. We then say that the priority rule with parameter q∗ is able to induce the system’s

first best solution if hp(q∗) is the same as hfb(t̄), i.e., the optimal average waiting time achievable

under centralized control.

Theorem 2 below characterizes conditions under which the priority rule can induce the system’s

first best solution. To state the results, let S := µ2 − λ(1 − t̄ + F (t̄)) − (1 − f(t̄))(µ1 − λt̄), and

M := (1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄).

Theorem 2 Assume that (λ,µ1, µ2, f)∈ Srefined. The following holds for the priority rules:

1. If µ2 ≥ µ1 + λ, applying priority rules cannot further reduce the average waiting time in the

refined information equilibrium, i.e., hp(q∗) = hr(t∗)>hfb(t̄);

2. If µ2 <µ1 +λ,

(a) When t∗ < t̄: If λ2M ≥ µ2(µ2 −λF (t̄))S, we have

q∗ =
µ2
2S

λ(µ2F (t̄)S+λM)
,
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and the priority rule with parameter q∗ (which prioritizes in-person follow-ups) induces

the system’s first best solution, i.e., hr(t∗) > hp(q∗) = hfb(t̄); otherwise, we have q∗ = 1,

and the priority rule with parameter q∗ does not induce the system’s first best solution,

i.e., hr(t∗)>hp(1)>hfb(t̄);

(b) When t∗ > t̄: If λ2M ≥ µ2(λ(1− t̄)−µ2)S, we have

q∗ =
µ2
2S

λ (µ2(1− t̄)S−λM)
,

and the priority rule with parameter q∗ (which prioritizes initial in-person visits) induces

the system’s first best solution, i.e., hr(t∗) > hp(q∗) = hfb(t̄); otherwise, we have q∗ = 1,

and the priority rule with parameter q∗ does not induce the system’s first best solution,

i.e., hr(t∗)>hp(1)>hfb(t̄).

In light of Theorem 2, the priority rule successfully induces the system’s first best solution

if the conditions in Cases 2(a) and 2(b) are satisfied. In cases where these conditions are not

fulfilled, adopting full priority continues to result in reduction in the average waiting time. The

only exception to this improvement is observed when µ2 ≥ µ1+λ, where the priority rule does not

impact the average waiting time.

Figure 6 illustrates Theorem 2, with the same numerical configurations as those in Figure 5.

In Figure 6, the blue region denotes the parameter combinations (µ1, µ2) where using the priority

rule induces the system’s first best solution. The red region marks the parameter combinations

where applying the priority rule strictly reduces the average patient waiting time in the refined

information equilibrium, but falls short of achieving the system’s first best solution. The yellow

region depicts the parameter region where the priority rule does not have any impact on improving

the average waiting time. Moreover, it is noteworthy that for the numerical instances considered

here, the red region in Figure 4 is contained in the blue region in Figure 6. This observation implies

that in the parameter region where the average waiting time in the refined information equilibrium

exceeds that in the crude information equilibrium, we can turn the information disadvantage into

an advantage by simultaneously applying the priority rule. It is crucial to emphasize that, while

we cannot formally prove this statement for general model primitives due to limited analytical

tractability, extensive numerical experiments consistently support the same conclusion.

Finally, in establishing Theorem 2, we first identify the shortest average waiting time hp(q∗)

among all potential equilibria under priority rules, then retrieve the corresponding priority param-

eter q∗. Nevertheless, it remains unclear a priori whether the patient equilibrium with an average
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(a) f satisfies condition C (b) f violates condition C

Figure 6 Conditions Under Which the Priority Rule Induces the First Best Solution

waiting time of hp(q∗) is unique under the priority rule with the specified parameter q∗. Indeed,

the uniqueness of patient equilibrium under priority rules is highly nontrivial and may not hold

across all values of the parameter q. To mitigate concerns about encountering multiple equilibria

under the priority rule, we provide conditions in Proposition 7 to verify the uniqueness of the

equilibrium under any given priority rule. To state the results, we define a constant q̄ ∈ R and a

function q̂ : [0,1]→R, whose explicit expressions are provided in Appendix B.10.

Proposition 7 Assume that (λ,µ1, µ2, f) ∈ Srefined. Under the priority rule with parameter q, a

unique threshold-type Nash equilibrium exists if the following conditions hold:

1. When t∗ < t̄, at least one of the following three conditions is satisfied: µ1 ≤ λ, µ2 ≥ µ1 − (1−

E[X])λ, or q < q̄;

2. When t∗ > t̄, 0≤ q < q̂(t) for all t < t∗.

7. Case Study

In this section, we conduct a comprehensive case study using real-world outpatient data from a large

academic hospital in Maryland. The goal of the case study is to provide a step-wise demonstration

of how to implement our theoretical framework in a real-world clinic setting and how to estimate

performance improvement. The case study consists of the following key components:

1. Prediction model: In our theoretical model, we assume that the distribution for the in-

person follow-up probability after telemedicine consultations is given. To facilitate real-world

implementation, we construct a logistic regression model using visit-level data to predict

whether each patient will necessitate an in-person follow-up after receiving treatment via
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telemedicine. We illustrate how the developed prediction model can be integrated into our

theoretical framework and applied during real-world online triage.

2. Model calibration: We demonstrate how to calibrate the model parameters using real-world

data. In addition to the arrival and service rates (λ,µ1, µ2), we illustrate how the distribu-

tion of the follow-up probability X (alternatively, the function f) can be retrieved from the

constructed logistic regression model.

3. Implementation of proposed policies: Utilizing the prediction model and calibrated

parameters, we identify the parameter region to which the hospital operations belong, which

determines the directional impact of information provision and priority rules. In a more quan-

titative analysis, we calculate the average patient waiting time under the proposed policies

and quantify the improvement over the benchmark scenario.

For the rest of this section, we review the data set in Section 7.1 and develop the prediction model

in Section 7.2. Then in Section 7.3, we calibrate the model and compare the system performance

under our proposed policies to the benchmark scenario.

7.1. Data Set

We obtain our research data for a large academic hospital in Maryland from the Maryland Health

Services Cost Review Commission. The focal hospital started providing telemedicine options for

preprocedural assessment on January 1, 2021. To analyze the efficacy of telemedicine treatment in

substituting for in-person preprocedural assessment, we examine the data related to preprocedural

assessment from January 1, 2021, to September 30, 2023, identified through the primary diagnosis

code Z01.818 within the ICD-10 system. The data set contains a total of 3,275 visits, among which

210 (6.412%) were conducted through telemedicine. These visits involve a total of 3,159 unique

patients, among whom 209 unique patients had telemedicine service.

The data contain both the visit-level clinical information and patient-level demographic charac-

teristics. Unique patient identifiers are provided to track patients’ visits, follow-ups, and diagnoses

over time. At the encounter level, the data record the time of the visit, care modality (i.e., in-

person or telemedicine), patient demographic information, insurance plan, patient comorbidities

(i.e., the Charlson comorbidity index), arrival source (i.e., home or another care site), and up to six

additional diagnosis codes that specify the clinical focus of preprocedural assessment, e.g., E00–

E89 (nutrition), H00–H59 (eyes), and K00–K95 (digestion). The definition and description of each

diagnosis code can be found on the CDC website.

Table A.1 in Appendix A provides summary statistics for the data fields. Additionally, we calcu-

late the number of days from the focal preprocedural assessment until an in-person follow-up visit
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(if any) and report the mean and standard deviation. Moreover, we include a measure to signal the

overall care needs of each patient, defined as the total number of outpatient visits for all purposes

conducted by this patient during 2020 (the year before the start of our focal data set). From Table

A.1, we see that the patient population who received preprocedural assessment exhibits sufficient

heterogeneity in terms of patient characteristics.

7.2. Prediction Model

The objective of the prediction is to forecast the likelihood of an in-person follow-up after the focal

visit. To this end, we identify whether each visit is followed by another visit within 7, 14, 21, and

30 days. These indicators, labeled as followup7, followup14, followup21, and followup30, are our

target variables for prediction. To evaluate the performance of the regression model, we partition

the data set into training and test sets. The training set comprises 90% (2,947 records) of the data,

while the test set includes the remaining 10% (328 records).

We construct a logistic regression model by incorporating various sets of predictors. The first set

contains patient-level details such as age, sex, ethnicity, race, insurance, arrival source, Charlson

comorbidity index, and the total number of outpatient visits by each patient in 2020. In addition,

for each of the 22 diagnosis codes, we introduce a binary variable indicating the presence of that

specific diagnosis code during the focal visit. Moreover, we incorporate time-fixed effects using

indicators for the year and quarter. Lastly, we include a binary indicator for the visit modality,

namely, telemedicine or in-person. Results of the logistic regression are partially presented in Table

1 for discussion, with the rest of the results relegated to Appendix A.

We draw several interesting observations based on the results presented in Table 1. First, the

indicator for care modality is statistically significant and associated with a positive coefficient. This

suggests that telemedicine visits are positively correlated with the need for in-person follow-up,

which validates our modeling assumption. Second, distinct insurance types exhibit varying levels of

association with in-person follow-up needs. For example, with everything else held constant, self-

pay patients are less inclined to pursue in-person follow-ups compared to those with commercial

insurance. Conversely, patients covered by Medicare or Medicaid plans are more likely to seek in-

person follow-ups than those utilizing commercial insurance. Third, the arrival source of the focal

visit, whether from home or from other care sites, emerges as a significant predictor of in-person

follow-up needs. Specifically, patients arriving from other care sites have a higher likelihood of

requiring in-person follow-ups than those arriving from home. Fourth, the total number of outpa-

tient visits in 2020, created to signal the patient’s overall care needs, is positively associated with

the likelihood of experiencing in-person follow-up visits. Lastly, the binary indicators for various
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Table 1 Regression Results (Part 1)

followup7 followup14 followup21 followup30

(1) (2) (3) (4)

Tele-Visit 0.475∗∗ 2.231∗∗∗ 3.110∗∗∗ 3.326∗∗∗

(0.235) (0.360) (0.539) (0.612)

Age Group (20-39) 0.078 0.092 0.056 -0.013
(0.187) (0.187) (0.185) (0.183)

Age Group (40-59) -0.115 -0.041 -0.080 -0.099
(0.170) (0.169) (0.168) (0.165)

Age Group (60-79) -0.411∗∗ -0.277 -0.244 -0.268
(0.186) (0.185) (0.182) (0.179)

Age Group (80+) 0.356 0.595∗∗ 0.579∗∗ 0.514∗

(0.269) (0.269) (0.267) (0.265)

Sex (Male) -0.652∗∗∗ -0.602∗∗∗ -0.574∗∗∗ -0.551∗∗∗

(0.096) (0.094) (0.093) (0.091)

Ethnicity -0.137 -0.050 -0.033 -0.038
(Not Hispanic or Latinx) (0.221) (0.225) (0.225) (0.223)
Ethnicity -23.784 -23.761 -23.805 -3.107∗∗∗

(Unkown) (19377.296) (19454.466) (19471.075) (1.052)

Insurance (Medicaid) 0.537∗∗∗ 0.631∗∗∗ 0.713∗∗∗ 0.798∗∗∗

(0.164) (0.163) (0.161) (0.160)
Insurance (Medicare) 0.125 0.115 0.164 0.255∗

(0.136) (0.138) (0.136) (0.134)
Insurance (Self pay) -1.146∗∗∗ -0.940∗∗ -0.939∗∗ -0.887∗∗

(0.379) (0.366) (0.370) (0.366)
Insurance (Other) -0.028 -0.021 0.065 0.170

(0.181) (0.185) (0.182) (0.178)

Source of Arrival 0.532∗∗∗ 0.476∗∗∗ 0.442∗∗∗ 0.370∗∗∗

(Other Care Sites) (0.092) (0.092) (0.091) (0.090)

Number of Visits in 2020 0.132∗∗∗ 0.132∗∗∗ 0.145∗∗∗ 0.168∗∗∗

(0.042) (0.042) (0.042) (0.043)

Charlson Index -0.170 -0.394∗∗ -0.225 -0.274
(0.156) (0.200) (0.202) (0.202)

Diagnosis Codes -1.863∗∗ -1.507∗∗ -1.415∗∗ -1.253∗

(E00-E89, Nutrition) (0.753) (0.690) (0.667) (0.645)
Diagnosis Codes 1.596∗∗∗ 1.608∗∗∗ 1.547∗∗∗ 1.549∗∗∗

(H00-H59, Eyes) (0.277) (0.278) (0.278) (0.278)
Diagnosis Codes 1.229∗∗∗ 1.252∗∗∗ 1.173∗∗∗ 1.099∗∗∗

(K00-K95, Digestion) (0.277) (0.272) (0.273) (0.273)

Intercept 0.024 -0.456 -0.358 -0.202
(0.341) (0.356) (0.361) (0.360)

Observations 3275 3275 3275 3275

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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diagnosis codes exhibit significant predictive power. As partially outlined in Table 1, patients with

nutrition issues are less prone to in-person follow-ups, while those with eye or digestion issues are

more likely to have in-person follow-ups, possibly driven by the necessity for physical examinations.

To evaluate the prediction accuracy of the logistic regression model, we analyze the corresponding

ROC (receiver operating characteristic) curves on both the training and test data, as illustrated

in Figure 7. Notably, the model attains an AUC (area under the ROC curve) of 0.77 for both

the training and test sets. The consistent AUC values indicate effective and robust performance,

alleviating concerns of overfitting.

(a) ROC curve on training data set (b) ROC curve on test data set

Figure 7 Performance of the Prediction Model

7.3. Model Calibration

In this section, we calibrate the parameters for our theoretical model, i.e., (λ,µ1, µ2, f), using the

data set and the constructed logistic regression model.

In order to retrieve the functional form of f , we first estimate the distribution of in-person follow-

up probabilities for our patient population. Based on the inverse-transform method, the function

f is derived as the inverse of the cumulative distribution function representing these in-person

follow-up probabilities. To this end, we assume that all the encounters in our data set occurred via

telemedicine, and we focus on the seven-day follow-ups. Subsequently, we apply the logistic regres-

sion model to forecast the likelihood of each appointment requiring an in-person follow-up. Figure

8(a) demonstrates the histogram of these probabilities, which can be considered as the empirical

distribution of the random variable X. We then use the Python package “Fitter” to identify the

probability distribution that best aligns with the observed data. Based on the criterion of the
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smallest sum of squared errors, the most suitable distribution is the truncated exponential modified

normal distribution (exponnorm) with support between 0 and 1. The parameters of the truncated

exponnorm distribution are K = 1.894, loc = 0.208, and scale = 0.108. To visually demonstrate

the goodness of fit, we depict the density function of the fitted exponnorm distribution via the

red line in Figure 8(a). Subsequently, we retrieve the function f through the inverse cumulative

distribution function of the fitted exponnorm distribution, as shown in Figure 8(b).

(a) Histogram with Exponnorm fit (b) f by inverting Exponnorm CDF

Figure 8 Fitted Distribution

Having estimated the functional form of f , we proceed to calibrate the values of the arrival

and service rates from the data. Assuming the hospital operates for 8 hours on weekdays, we

calculate the hourly arrival rate for patients requiring procedural assessment as λ= 3,275/(716×

8) = 0.572, where 3,275 represents the total number of patient encounters over 716 weekdays in

our data set. To determine a suitable telemedicine service rate µ1, we refer to the findings of

Meyer et al. (2023), who examine telemedicine duration for various patient types. According to

Table 1 in Meyer et al. (2023), the average telemedicine service duration for return patients is 23

minutes, corresponding to a service rate of 2.6 encounters per hour. Considering that preprocedural

assessment only constitutes a portion of all outpatient encounters, we further adjust the service rate

based on the proportion of preprocedural assessment among all outpatient encounters. Specifically,

we set µ1 = 2.6× (3,275/219,734) = 0.039, where 219,734 is the total number of outpatient visits

at the hospital over the same period as our data. Finally, to estimate the in-person service rate

µ2, we scale µ1 proportionally by the ratio between telemedicine throughput and in-person visit

throughput. Consequently, we have µ2 = µ1 × (3,065/210) = 0.566. We note that our theoretical
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model assumes single servers at both queues to gain analytical tractability. In this context, the

calibrated values of µ1 and µ2 can be interpreted as the effective service rates of “super servers,”

accounting for potential variations in server counts in real-world scenarios.

7.4. Performance Evaluation

With the parameters (λ,µ1, µ2, f) derived above, we apply the theoretical results to the hospital

setting. First, we find that the hospital operates in the stable parameter region under both informa-

tion regimes, i.e., (λ,µ1, µ2, f)∈ Scrude. Subsequently, we characterize the patient equilibrium in the

two information granularity regimes, as well as the system’s first best solution. Table 2 below lists

the values of p∗, t∗, and t̄, corresponding to the probability of selecting telemedicine service in the

crude information equilibrium, the threshold for choosing telemedicine in the refined information

equilibrium, and the threshold of the system’s first best solution. We note that the telemedicine

adoption rate observed in the data is 0.064, which is closer to p∗ = 0.043 in the crude information

equilibrium than t∗ = 0.039 of the refined information equilibrium. This suggests that the current

hospital operations resemble more closely to the crude information granularity regime, which is

reasonable given that the hospital has not employed any online triage tool to provide information

and guide patients’ decisions. In Table 3, we further calculate the resulting average patient waiting

times under both patient equilibria and the system’s first best solution. In the crude information

equilibrium, the average waiting time across all patients is approximately 3 weeks (14.48 days),

with the waiting time at the telemedicine queue being 5.72 days shorter than the waiting time at

the in-person queue. In comparison to this benchmark, employing an online triage tool to provide

personalized predictions to patients can effectively reduce the average waiting time to 8.56 days

(41% reduction). Furthermore, if the hospital implements a strict priority rule (with q∗) to incen-

tivize patients to choose telemedicine, the average waiting time can be further reduced to 8.13 days

(another 5% reduction). (Here, f satisfies the assumption of Case 1(a) in Proposition 7, so that

the equilibrium is unique under with priority rule with q∗ = 1.) In summary, both the provision of

information alone and the combination of information with a priority rule demonstrate potential

for improving the performance of the hospital’s current practices.

8. Conclusion

This paper evaluates the potential advantages of investing in an online triage tool with under-

lying predictive analytics to facilitate telemedicine integration. Our approach involves developing

a comprehensive framework that encompasses three key components: 1) a prediction model that

forecasts patients’ in-person follow-up needs after telemedicine service, 2) a queueing-game model

that assesses the impact of information provision and prioritization on system performance, and 3)
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Table 2 Equilibria Comparison (pdata = 0.064)

Crude Refined First Best Priority

p∗ t∗ t̄ q∗

Strategy 0.043 0.039 0.056 1

Table 3 Waiting Time Comparison (Unit: Days)

Average Waiting Time Crude Refined First Best Priority

Across All Patients 14.48 8.56 6.18 8.13

At The Telemedicine Queue 8.76 7.62 19.14 8.08

At The In-Person Queue 14.48 8.58 5.38 8.11

a case study that demonstrates the application of our theoretical results in a real-world setting. In

terms of the value of information, our findings reveal that providing more information to patients

has the advantage of maximizing the system stability region, but it does not consistently lead

to a reduction in the average patient waiting time. Nevertheless, in the seemingly “problematic”

situations where the refined information equilibrium yields a higher average waiting time than the

crude information equilibrium, we show that by simultaneously implementing a priority rule, we

can transform this information disadvantage into an advantage, achieving the optimal centralized

system performance under specific conditions. To facilitate real-world implementation, we conduct

a case study utilizing actual hospital data. The case study provides a step-wise demonstration of

prediction model construction, model parameter calibration, and performance evaluation under

the proposed policies.

We conclude by discussing several limitations of our work and identifying a few interesting

avenues for future research.

First, we assume that patients have homogeneous and deterministic service value and waiting

cost for analytical tractability. When heterogeneous and random service value and waiting cost

are concerned, one promising direction is to extend our model by treating the service value and

waiting cost as mappings of random patient types. By making additional assumptions regarding

the linearity of these mappings, we conduct extensive numerical experiments and observe that the

high-level structural insights, in terms of the impact of information provision and priority rules,

remain robust. That said, it would be interesting to rigorously extend the model and analysis to

incorporate random cost and reward structures that follow general distributions.

Second, our patients’ decision model captures the core tradeoff between waiting time and treat-

ment efficacy (which are the most important factors influencing patients’ preferences reported by

Mozes et al. (2022)) as they choose between visit modalities. That said, the real-world decision-

making process for patients can be influenced by a multitude of other factors, including transporta-

tion time and costs, insurance coverage for different visit modalities, and potential repercussions
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of inadequate telemedicine treatment (such as clinical deterioration and mental burden). Incor-

porating additional elements into the decision model, such as introducing fixed costs for selecting

an in-person visit or requiring in-person follow-up after telemedicine, is expected to be relatively

straightforward and maintain the high-level insights. However, incorporating complex insurance

policies and pricing mechanism is likely to necessitate fundamentally different development.

Third, in our research, we examine two ends of the information granularity spectrum: patients

either possess complete or no information regarding their realized types, corresponding to the

refined and crude information regimes, respectively. However, real-world prediction models, such

as the logistic regression model developed in our case study, are susceptible to prediction errors.

Moreover, patients may have partial understanding of their realized types and suitability for

telemedicine. Therefore, a meaningful future research direction is to consider information granu-

larity that falls between these two extremes on the spectrum.
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Appendix A: Case Study Supplements

Table A.1 below provides the summary statistics of the features used in the logistic regression model for the

focal data set.

Table A.1 Summary Statistics of the Data Set

Statistics by Care Modality, No. (%)

Characteristic
Total
(n = 3275)

In-person
(n = 3065)

Telemedicine
(n = 210)

Unique Patients 3159 2969 209
Days to Follow-up, Mean (SD) 50.11 (145.57) 53.11 (150.00) 6.35 (5.44)
Patient Age Group
Under 19 279 (9) 279 (9) 0 (0)
[20,39] 480 (15) 464 (15) 16 (8)
[40,59] 1224 (37) 1127 (37) 97 (46)
[60,79] 1146 (35) 1065 (35) 81 (39)
Above 80 146 (4) 130 (4) 16 (8)
Sex
Male 1206 (37) 1203 (39) 3 (1)
Female 2069 (63) 1862 (61) 207 (99)
Ethnicity
Not Hispanic or Latinx 3061 (93) 2859 (93) 202 (96)
Hispanic or Latinx 174 (5) 166 (5) 8 (4)
Unknown 40 (1) 40 (1) 0 (0)
Race
White 1952 (60) 1829 (60) 123 (59)
Black 769 (23) 727 (24) 42 (20)
Asian 288 (9) 254 (8) 34 (16)
Native American 3 (0) 3 (0) 0 (0)
Hawaiian 3 (0) 3 (0) 0 (0)
Unknown 260 (8) 249 (8) 11 (5)
Primary Insurance
Commercial 2035 (62) 1899 (62) 136 (65)
Medicare 742 (23) 686 (22) 56 (27)
Medicaid 231 (7) 229 (7) 2 (1)
Self Pay 64 (2) 64 (2) 0 (0)
Other Insurance 203 (6) 187 (6) 16 (8)
Source of Patients
Home 2093 (64) 1883 (61) 210 (100)
Clinic or Physician Office 1182 (36) 1182 (39) 0 (0)
Number of Visits in 2020, Mean (SD) 0.34 (0.98) 0.35 (1.00) 0.19 (0.54)
Charlson Comorbidity Index, Mean (SD) 0.14 (0.53) 0.07 (0.38) 1.11 (1.11)
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Table A.2 and A.3 provide the rest of the logistic regression results that are not shown in the main body

of the paper. Table A.2 shows the effect of diagnosis code and Table A.3 shows the impact of race, and the

year and season effect.

Table A.2 Regression Results (Part 2)

followup7 followup14 followup21 followup30

(1) (2) (3) (4)

A00-B99 -25.617 -25.542 -25.469 -22.443
(131010.700) (131010.690) (131010.683) (29232.438)

C00-D49 0.339 1.311∗∗∗ 1.053∗∗ 1.047∗∗

(0.328) (0.409) (0.414) (0.416)
D50-D89 -23.901 -24.000 -24.242 -21.464

(59267.355) (60097.147) (58872.173) (12974.709)
F01-F99 1.128 0.997 0.906 0.809

(1.788) (1.677) (1.672) (1.639)
G00-G99 -1.328 -1.438 -1.350 -1.528

(1.122) (1.111) (1.104) (1.109)
H60-H95 0.050 -0.689 -1.038 -1.054

(1.665) (2.101) (2.405) (2.394)
I00-I99 -0.101 0.052 -0.178 0.049

(0.474) (0.447) (0.454) (0.443)
J00-J99 -0.793 -0.743 -0.906 -0.537

(0.728) (0.721) (0.729) (0.666)
L00-L99 0.097 -0.168 -0.236 0.528

(0.679) (0.660) (0.657) (0.613)
M00-M99 -0.006 0.282 0.144 0.193

(0.353) (0.331) (0.332) (0.324)
N00-N99 1.123∗∗∗ 1.101∗∗∗ 1.062∗∗∗ 1.243∗∗∗

(0.357) (0.377) (0.377) (0.385)
O00-09A 0.065 -0.215 -0.422 -0.588

(1.386) (1.471) (1.561) (1.663)
P00-P96 0.000 -0.000 -0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Q00-Q99 -1.519∗ -0.913 -1.000 -1.217∗

(0.831) (0.687) (0.680) (0.699)
R00-R99 -2.213∗∗∗ -1.325∗∗∗ -1.193∗∗∗ -1.140∗∗∗

(0.453) (0.373) (0.362) (0.352)
S00-T88 -24.597 -1.217 -1.236 -1.843

(59093.094) (1.238) (1.232) (1.223)
U00-U85 -2.969∗∗∗ -0.197 -0.491 -0.269

(1.086) (0.633) (0.645) (0.647)
V00-Y99 24.930 1.685 1.604 2.046

(59093.094) (1.409) (1.407) (1.410)
Z00-Z99 -1.034∗∗∗ -0.650∗∗∗ -0.701∗∗∗ -0.768∗∗∗

(0.198) (0.213) (0.222) (0.225)

Observations 3275 3275 3275 3275

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3 Regression Results (Part 3)

followup7 followup14 followup21 followup30

(1) (2) (3) (4)

Race (Asian) -0.255 -0.276∗ -0.265 -0.296∗

(0.157) (0.162) (0.163) (0.163)
Race (Black) 0.001 -0.048 0.010 0.017

(0.103) (0.105) (0.104) (0.103)
Race (Havaiian) 1.533 1.270 1.177 1.124

(1.257) (1.237) (1.236) (1.236)
Race (Native American) 1.542 1.524 1.458 1.378

(1.278) (1.273) (1.268) (1.266)
Race (Unknown) -0.001 0.006 -0.014 0.045

(0.191) (0.193) (0.193) (0.190)

Year&Quarter (2021q2) 0.069 0.057 0.026 0.002
(0.113) (0.112) (0.111) (0.109)

Year&Quarter (2021q3) 0.836∗∗∗ 0.749∗∗∗ 0.676∗∗∗ 0.618∗∗∗

(0.134) (0.135) (0.134) (0.133)
Year&Quarter (2021q4) 1.710∗∗∗ 1.991∗∗∗ 2.097∗∗∗ 2.140∗∗∗

(0.279) (0.312) (0.329) (0.340)
Year&Quarter (2022q1) 1.049∗∗∗ 0.926∗∗∗ 1.218∗∗∗ 1.283∗∗∗

(0.325) (0.358) (0.382) (0.391)
Year&Quarter (2022q2) 0.657 0.914∗ 1.237∗∗ 1.448∗∗

(0.422) (0.511) (0.573) (0.613)
Year&Quarter (2022q3) 1.030∗∗ 1.891∗∗∗ 2.555∗∗∗ 2.457∗∗∗

(0.443) (0.591) (0.777) (0.777)
Year&Quarter (2022q4) 1.490∗∗∗ 2.705∗∗∗ 3.128∗∗∗ 3.019∗∗∗

(0.370) (0.520) (0.639) (0.640)
Year&Quarter (2023q1) 1.882∗∗∗ 2.403∗∗∗ 2.965∗∗∗ 3.126∗∗∗

(0.408) (0.467) (0.578) (0.643)
Year&Quarter (2023q2) 0.834∗∗∗ 1.694∗∗∗ 1.791∗∗∗ 1.633∗∗∗

(0.310) (0.398) (0.428) (0.430)
Year&Quarter (2023q3) 0.694∗ 1.102∗∗ 0.937∗∗ 0.803∗

(0.412) (0.467) (0.476) (0.478)

Observations 3275 3275 3275 3275

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



41

Appendix B: Proofs of Main Results

B.1. Proof of Proposition 1

Proof: We first derive the stability condition for the crude patient strategy. To ensure the crude system

is stable, by Lemma 1, the following two equations have to be satisfied for some p∈ [0,1]:

µ1 −λp> 0 ⇔ p <
µ1

λ
,

µ2 −λ(1− p+ pE[X])> 0 ⇔ λp(1−E[X])>λ−µ2 ⇔ p >
λ−µ2

λ(1−E[X])
:= ps.

We divide our discussion into 4 cases.

Case 1. When µ1 >λ and µ2 >λ, all p∈ [0,1] satisfy the above two inequalities.

Case 2. When µ1 >λ and λE[X]<µ2 ≤ λ, all p∈ (ps,1] satisfy the above two inequalities.

Case 3. When µ1 ≤ λ and µ2 >λ, all t∈ [0, µ1/λ) satisfy the above two inequalities.

Case 4. When µ1 ≤ λ and λE[X]< µ2 ≤ λ, if ps = (λ−µ2)/(λ(1−E[X]))< µ1/λ⇔ λ− (1−E[X])µ1 < µ2,

we have all p∈ (ps, µ1/λ) satisfying the above two inequalities. Otherwise, there is no p∈ [0,1] satisfying the

above two inequalities.

To summarize, the stability condition for the crude system is µ2 > λE[X] when µ1 > λ, and µ2 > λ −

(1−E[X])µ1 when µ1 ≤ λ. The set of p satisfying the stability condition can be summarized as the interval

(max(0, ps),min(1, µ1/λ)).

Given Equation (5), any strictly-mixed strategy g(U) = p∈ (0,1) should solve the following equation:

1

µ1 −λp
+

E[X]

µ2 −λ(1− p+ pE[X])
=

1

µ2 −λ(1− p+ pE[X])
. (B.1)

The left-hand side (LHS) of Equation (B.1) is the expected waiting time at the telemedicine queue and the

right-hand side (RHS) of Equation (B.1) is the expected waiting time at the in-person queue. To better

compare the two sides, we rewrite Equation (B.1) as

1

µ1 −λp
=

1−E[X]

µ2 −λ(1− p+ pE[X])
. (B.2)

By taking the derivative it is straightforward to show that the LHS of Equation (B.2) is strictly increasing

with respect to p, and the RHS of Equation (B.2) is strictly decreasing with respect to p. This implies that

there is at most one root (if any) of p∗ that solves Equation (B.2), and thus Equation (B.1). We next charac-

terize patients’ equilibrium strategies using Equation (B.2). We divide the discussion into the following three

cases which partition the parameter space. More specifically, a pure strategy equilibrium exists in Cases 1

and 2, and a mixed strategy equilibrium exists in Case 3.

Case 1. When λ + (1 − E[X])µ1 = µ2, we have LHS= 1/µ1 = (1−E[X])/(µ2 −λ) = RHS at p = 0, thus

p∗ = 0 is the only solution to Equations (B.2) and (B.1), which implies p∗ = 0 is the equilibrium. When

λ+ (1−E[X])µ1 < µ2, LHS= 1/µ1 > (1−E[X])/(µ2 −λ) = RHS⇒ LHS>RHS for all p in Equation (B.2).

This implies that in Equation (B.1), we also have LHS>RHS for all p, because the comparison direction does

not change when we subtract the same number from both sides. It follows that p∗ = 0 is the equilibrium. To

summarize both scenarios, when λ+(1−E[X])µ1 ≤ µ2, p
∗ = 0 is the equilibrium.

Case 2. If µ1 > λ, when µ2 = (1 − E[X])µ1 − (1 − 2E[X])λ, we have LHS= 1/(µ1 −λ) =
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(1−E[X])/(µ2 −λE[X]) =RHS at p = 1, thus p∗ = 1 is the only solution to Equations (B.2) and (B.1),

which implies that p∗ = 1 is the equilibrium. When µ2 < (1− E[X])µ1 − (1− 2E[X])λ, LHS= 1/(µ1 −λ)<

(1−E[X])/(µ2 −λE[X]) =RHS ⇒ LHS<RHS for all p in Equation (B.2). Hence, in Equation (B.1), we also

have LHS<RHS for all p, because the comparison direction does not change if we subtract the same number

from both sides. It follows that p∗ = 1 is the equilibrium. In conclusion, when µ2 ≤ (1−E[X])µ1−(1−2E[X])λ

and µ1 >λ, p∗ = 1 is the equilibrium.

Case 3. Otherwise, the LHS and RHS of Equation (B.2) must intersect and there is a unique solution

p∗ ∈ (0,1). Solving Equation (B.2) is equivalent to solving

(1−E[X])(µ1 −λp) = µ2 −λ(1− p+ pE[X]). (B.3)

Solving the above equation, we get a unique solution p∗ = ((1−E[X])µ1 +λ−µ2)/(2λ(1−E[X])) which is

also the only solution to Equation (B.1). To check whether p∗ satisfies the crude stability condition, we plug

p∗ into µ1 −λp∗ > 0, which gives µ2 >λ− (1−E[X])µ1, the crude stability condition. Q.E.D.

B.2. Proof of Lemma 2

Proof: Suppose the equilibrium is of mixed strategy equilibrium for every type of patient. Then by defini-

tion, the expected waiting times at both queues should be the same for all types. That is, let g : [0,1]→ [0,1]

denote any patient strategy and we denote p=
∫ 1

0
g(x)dx, then we should have

1

µ1 −λp
+

f(t)

µ2 −λ(1− p+D(p))
=

1

µ2 −λ(1− p+D(p))
, ∀t∈ [0,1], (B.4)

where D(p) =
∫ 1

0
g(x)f(x)dx. The LHS of Equation (B.4) is the expected waiting time at the telemedicine

queue, and the RHS of Equation (B.4) is the expected waiting time at the in-person queue. It is impossible

that the above equation holds for all t ∈ [0,1] because the denominators are independent of t and the value

of f(t) is unique for each t∈ [0,1]. Rearranging the terms of Equation (B.4), we get

1

µ1 −λp
=

1− f(t)

µ2 −λ(1− p+D(p))
. (B.5)

For a fixed strategy g, the LHS of Equation (B.5) is a constant while the RHS of Equation (B.5) is a strictly

decreasing function, thus if the two lines intersect, there is only one intersection, which we denote as t∗. We

consider the following cases for that given g.

Case 1. If t∗ ∈ [0,1] exists under strategy g, then because f is strictly increasing, in Equation (B.5), we

have LHS<RHS for all t < t∗, and LHS>RHS for all t > t∗. Thus in Equation (B.4), we also have LHS<RHS

for all t < t∗, and LHS>RHS for all t > t∗ because adding the same value on both sides does not change

the order of the inequality. That is, all types t < t∗ deviate to the telemedicine service, and all types t < t∗

deviate to the in-person service. Thus g(t) = 1 for t≤ t∗, g(t) = 0 for t > t∗, and p= t∗ is the equilibrium.

Case 2. If in Equation (B.5), LHS<RHS for all t∈ [0,1] under strategy g, which implies in Equation (B.4),

LHS<RHS for all t∈ [0,1] under strategy g. Then we define t∗ = 1, and g(t) = 1 for t≤ t∗ is the equilibrium.

Case 3. If in Equation (B.5), LHS>RHS for all t∈ [0,1] under strategy g, which implies in Equation (B.4),

LHS>RHS for all t∈ [0,1] under strategy g. Then we define t∗ = 0, and g(t) = 0 for t≥ t∗ is the equilibrium.

Q.E.D.
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B.3. Proof of Proposition 2

Proof: We prove that in the refined system, a unique equilibrium threshold t∗ exists. We first derive the

refined stability condition for the one-threshold type strategy. Notice that under the one-threshold type of

strategy, p reduces to t and D(p) reduces to F (t) if t is the threshold. Then to ensure the refined system is

stable, by Lemma 1, the following two equations have to be satisfied for some t∈ [0,1]:

µ1 −λt > 0⇔ t <
µ1

λ
,

µ2 −λ(1− t+F (t))> 0.

We divide our discussion into 4 cases.

Case 1. When µ1 >λ and µ2 >λ, because 1− t+F (t) is strictly decreasing in t with the upper bound equal

to 1 since F (0) = 0, all t∈ [0,1] satisfy the above two inequalities.

Case 2. When µ1 >λ and λE[X]<µ2 ≤ λ, we define ts :=min{t∈ [0,1)|µ2−λ(1− t+F (t)) = 0 and λE[X]<

µ2 ≤ λ}. Then because 1− t+F (t) is strictly decreasing in t with the lower bound 1− 1+F (1) = E[X], all

t∈ (ts,1] satisfy the above two inequalities.

Case 3. When µ1 ≤ λ and µ2 >λ, all t∈ [0, µ1/λ) satisfy the above two inequalities.

Case 4. When µ1 ≤ λ and λE[X]< µ2 ≤ λ, if µ2 − λ(1− µ1/λ+ F (µ1/λ))> 0, we have ts < µ1/λ and all

t ∈ (ts, µ1/λ) satisfying the above two inequalities. Otherwise, there is no t ∈ [0,1] satisfying the above two

inequalities.

To summarize, the stability condition for the refined system is µ2 > λE[X] when µ1 > λ, and µ2 > λ(1−

µ1/λ + F (µ1/λ)) when µ1 ≤ λ. The set of t satisfying the stability condition can be summarized as the

interval (max(0, ts),min(1, µ1/λ)).

Continuing from the Proof of Lemme 2, we then prove that under the refined stability condition, the

threshold t∗ always exists and it is unique. Notice that for all strategy g under which the intersection t∗

exists, t∗ has to solve
1

µ1 −λt
=

1− f(t)

µ2 −λ(1− t+F (t))
. (B.6)

We show that Equation (B.6) has at most one solution of t. The derivative of the RHS of Equation (B.6)

with respect to t is
−f ′(t)(µ2 −λ(1− t+F (t)))− (1− f(t))2λ

(µ2 −λ(1− t+F (t)))2
< 0

because f ′(t)> 0. Thus we have the RHS strictly decreasing with respect to t. Obviously, the LHS strictly

increasing with respect to t. So if the two lines intersect, they intersect at most once, which implies that the

solution t∗ is unique if it exists and thus the corresponding equilibrium strategy g is unique.

We characterize the value of t∗ in different situations.

Case 1. t∗ = 1 is never an equilibrium. Because to have t∗ = 1, by (B.6), we need to ensure LHS≤RHS= 0

at t= 1, which is equivalent to µ1 −λt∗ ≤ 0, this violates the stability condition.

Case 2. If λ+ µ1 ≤ µ2, t
∗ = 0 is the equilibrium. This is because t∗ = 0 if LHS≥RHS at t = 0, which is

equivalent to µ2 − (1−F (0))λ≥ (1− f(0))µ1 ⇔ λ+µ1 ≤ µ2, because F (0) = f(0) = 0.

Case 3. Otherwise, a unique solution t∗ ∈ (0,1) to Equation (B.6) exists because the LHS and RHS must
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intersect and they intersect only once by the monotonicity. To show the existence of the intersection, we

first show that at the maximum t=min(1, µ1/λ), we have LHS>RHS. The LHS equals 1/µ1 −λ > 0 when

t= 1, and the RHS equals 0 when t= 1. The LHS→∞ when t→ µ1/λ, and the RHS< 1/(µ2 −λ)<∞ when

t→ µ1/λ. We then show at the minimum of t =max(0, ts), we have LHS<RHS. Because the condition in

Case 3 is already the complement of condition in Case 2, we have LHS<RHS at t= 0 if t= 0 is feasible. At

t = ts, the RHS →∞, and the LHS <∞ because LHS →∞ only when t→ µ1/λ. As long as ts < µ1/λ,

which is ensured by the stability condition, we have LHS <∞ for each specific ts. Q.E.D.

B.4. Sensitivity of the Equilibria

Lemma B.1 Let p∗ be the probability in Proposition 1 that characterizes the unique patient equilibrium

in the crude information regime, and let t∗ be the threshold in Proposition 2 that characterizes the unique

patient equilibrium in the refined information regime. The following results hold:

1. For (λ,µ1, µ2, f) ∈ Scrude, the probability p∗ increases with respect to µ1 and decreases with respect to

µ2;

2. For (λ,µ1, µ2, f) ∈ Srefined, the threshold t∗ increases with respect to µ1 and decreases with respect to

µ2.

Proof of Lemma B.1: We start by analyzing the crude equilibrium. According to Proposition 1,

when λ + (1 − E[X])µ1 ≤ µ2, p
∗ = 0; when µ2 ≤ (1 − E[X])µ1 − (1 − 2E[X])λ and µ1 > λ, p∗ = 1; other-

wise, p∗ = ((1−E[X])µ1 +λ−µ2)/(2λ(1−E[X])). Obviously, p∗ = ((1−E[X])µ1 +λ−µ2)/(2λ(1−E[X]))

increases with respect to µ1 and decreases with respect to µ2. In addition, when λ+ (1− E[X])µ1 ≤ µ2,

increasing µ1 or decreasing µ2 to some extent violates this condition and thus forces p∗ to become positive.

When µ2 ≤ (1−E[X])µ1 − (1− 2E[X])λ, increasing µ1 or decreasing µ2 maintains this condition and keeps

p∗ = 1.

For the refined equilibrium, according to Proposition 2, when λ+µ1 ≤ µ2, t
∗ = 0. Increasing µ1 or decreas-

ing µ2 to some extent violates the condition of λ+µ1 ≤ µ2 and thus forces t∗ to become positive.

Otherwise, for 0< t∗ < 1, rearranging (B.7) and plug in t= t∗, we get

µ2 −λ(1− t∗ +F (t∗))− (1− f(t∗)) (µ1 −λt∗) = 0. (B.7)

Take the derivative of (B.7) with respect to µ1 on both sides, we get

−λ

(
− ∂t∗

∂µ1

+ f(t∗)
∂t∗

∂µ1

)
+(µ1 −λt∗)f ′(t∗)

∂t∗

∂µ1

− (1− f(t∗))

(
1−λ

∂t∗

∂µ1

)
= 0.

Simplify it and we get

((µ1 −λt∗)f ′(t∗)+ 2λ(1− f(t∗)))
∂t∗

∂µ1

= 1− f(t∗).

Because (µ1 −λt∗)f ′(t∗)+ 2λ(1− f(t∗))> 0 and 1− f(t∗)> 0, we have ∂t∗

∂µ1
> 0.

Take the derivative of (B.7) with respect to µ2 on both sides, we get

1−λ

(
− ∂t∗

∂µ2

+ f(t∗)
∂t∗

∂µ2

)
+(µ1 −λt∗)f ′(t∗)

∂t∗

∂µ2

+λ(1− f(t∗))
∂t∗

∂µ2

= 0.

Simplify it and we get

((µ1 −λt∗)f ′(t∗)+ 2λ(1− f(t∗)))
∂t∗

∂µ2

=−1. (B.8)

Because (µ1 −λt∗)f ′(t∗)+ 2λ(1− f(t∗))> 0, we have ∂t∗

∂µ2
< 0. Q.E.D.
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B.5. Proof of Proposition 3

Proof: We show that for fixed f , if the stability condition for the refined system, µ2 > λ − µ1 +

λF (µ1/λ) if µ1 ≤ λ, holds, then the stability condition for the crude system, µ2 > λ − µ1 + µ1E[X], also

holds. We consider two cases:

Case 1. When µ1 >λ, the refine system is always stable. For the crude system, we have λ−µ1 +µ1E[X]<

λE[X]<µ2, where the second inequality follows from Assumption (1). Therefore, the conditions character-

izing the two sets above both reduce to µ2 >λE[X], which always holds by Assumption (1).

Case 2. When µ1 ≤ λ, it is sufficient to show that µ1E[X]≥ λF (µ1/λ), which is equivalent to (µ1/λ)E[X]−

F (µ1/λ) ≥ 0 . Let p = µ1/λ, then 0 < p ≤ 1. Then because pE[X] = p
∫ 1

0
f(x)dx and F (p) =

∫ p

0
f(x)dx =

p
∫ 1

0
f(px)dx, it follows that pE[X]−F (p) = p

∫ 1

0
(f(x)−f(px))dx> 0 since f is strictly increasing. Q.E.D.

B.6. Proof of Theorem 1 and Proposition 4

Proof: The proof is presented by firstly fixing λ, f , and µ1, and varying the value of µ2. After deriving the

expression that calculates µ̄2 and µ̃2, we fix f and λ, and show that µ̄2 and µ̃2 are continuous with respect

to µ1. Fixing λ, f , and µ1:

Case 1. According to Proposition 1 and Proposition 2, when µ2 ≥ µ1 +λ, p∗ = t∗ = 0, so hc(p∗) = hr(t∗).

Case 2a. From now on, within each case, we further divide our discussion into subcases where in the first

subcase, we conduct the equilibrium comparison, and in the second subcase, we conduct the average waiting

time comparison. When µ2 <µ1 +λ,

2a.1 (Equilibrium Comparison) Our first goal is to show that there exists a µ̄2 such that for µ2 ≥ µ̄2,

we have p∗ ≤ t∗. When µ2 ≥ (1 − E[X])µ1 + λ, by Proposition 1 and Proposition 2, 0 = p∗ < t∗. When

µ2 < (1−E[X])µ1+λ, Lemma B.2 below shows that at the µ∗
2 under which t∗ = f−1(E[X]), we have p∗ > t∗.

Because by the proof of Lemma B.1, when p∗ ̸= 0, both t∗ and p∗ are continuous and strictly increasing as µ2

decreases, there must exist a µ̄2 such that at µ2 = µ̄2 p∗ = t∗, and for µ2 ∈ [µ̄2, (1−E[X])µ1+λ), 0< p∗ ≤ t∗.

Lemma B.2 At µ2 = µ∗
2 := λ(1− t∗ +F (t∗))+ (1− f(t∗)) (µ1 −λt∗) where t∗ = f−1(E[X]), p∗ > t∗.

The proof of Lemma (B.2) is provided in Section B.6.1.

Notice that µ̄2 can be obtained by solving equation (µ1 −λp∗)(1− f(p∗)) = µ2 −λ(1− p∗ +F (p∗)), where

p∗ = ((1−E[X])µ1 +λ−µ2)/(2λ(1−E[X])). If we fix λ and f , then µ̄2 is continuous with respect to µ1

because both equations are continuous in µ1. So we denote it as µ̄2(µ1).

2a.2 (Average Waiting Time Comparison) We then compare the average waiting time. We show when

µ̄2 ≤ µ2 <µ1 +λ, hc(p∗)>hr(t∗). By the definition of the average waiting time, p∗, and t∗, we have

hc(p∗) =
p∗

µ1 −λp∗ +
1− p∗ + p∗E[X]

µ2 −λ(1− p∗ + p∗E[X])
=

1

µ2 −λ(1− p∗ + p∗E[X])
,

where the second equality is because (B.3), and

hr(t∗) =
t∗

µ1 −λt∗
+

1− t∗ +F (t∗)

µ2 −λ(1− t∗ +F (t∗))
=

1+F (t∗)− t∗f(t∗)

µ2 −λ(1− t∗ +F (t∗))
,

where the second equality is because (B.7).
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When µ̄2 ≤ µ2 < µ1 + λ, Case 2a.1 has shown p∗ ≤ t∗, then, we have 1− p∗ + p∗E[X]≥ 1− p∗ + F (p∗)≥

1− t∗ + F (t∗) because 1− t+ F (t) decreases in t. Thus the order of the denominators is µ2 − λ(1− p∗ +

p∗E[X])≤ µ2 −λ(1− t∗ +F (t∗)). In addition, because term 1+F (t)− tf(t) also decreases with respect to t,

which can be proved by taking the derivative, the order of the numerators is 1> 1+F (t∗)− t∗f(t∗) because

t∗ > 0. So that hc(p∗)>hr(t∗).

Case 2b and Case 3.

2b.1 and 3.1 (Equilibrium Comparison) To show that when µ2 < µ̄2, p
∗ > t∗, we consider two sub-cases:

µ∗
2 <µ2 < µ̄2 and µ2 <µ∗

2. For both cases, we show that p∗ > t∗.

(a) When µ∗
2 < µ2 < µ̄2, because t∗ is strictly decreasing in µ2, we have t∗ < f−1(E[X]). We show that

t∗ − p∗ is monotonically increasing with respect to µ2. By the proof of Lemma B.1,

∂(t∗ − p∗)

∂µ2

=
∂t∗

∂µ2

− ∂p∗

∂µ2

=
−1

2λ(1− f(t∗))+ (µ1 −λt∗)f ′(t∗)
+

1

2λ(1−E[X])
.

Notice the first term of the derivative is negative and the second term is positive. But in the current case,

t∗ < f−1(E[X]) ⇒ f(t∗) < E[X] ⇒ 2λ(1 − f(t∗)) > 2λ(1 − E[X]) ⇒ 1/(2λ(1 − f(t∗)) + (µ1 − λt∗)f ′(t∗)) <

1/(2λ(1−E[X])). Therefore, the derivative is positive.

(b) When µ2 < µ∗
2, i.e. t

∗ > f−1(E[X]), Lemma B.3 below show that when p∗ ̸= 1, p∗ > t∗. When p∗ = 1,

by Proposition 2, t∗ < 1 always holds, thus we still have t∗ < p∗.

Lemma B.3 When t∗ > f−1(E[X]) and p∗ ̸= 1, p∗ > t∗.

The proof of Lemma (B.3) is provided in Section B.6.1. To summarize, the result follows from Part (a), Part

(b), and Lemma B.2.

2b.2 and 3.2 (Average Waiting Time Comparison) When µ2 < µ̄2, we let K represents a set that contains

all µ2 at which hc(p∗) = hr(t∗). Then, every element of set K (if K is not empty) is a finite number within

the interval (λE[X], µ̄2). In addition, we define µ̃2 := supK and µ̂2 := infK. We show that K is nonempty by

comparing the order between hc(p∗) and hr(t∗). Notice that µ2 = (µ1−λ)(1−E[X])+λE[X] is the threshold

between p∗ < 1 and p∗ = 1. We divide our discussion into two cases: Case (a) is for µ2 ≥ (µ1−λ)(1−E[X])+

λE[X], and Case (b) is for µ2 < (µ1 −λ)(1−E[X]) +λE[X].

(a) When µ2 ≥ (µ1 −λ)(1−E[X])+λE[X], we show that if there ever exists a µ0
2 ∈ [(µ1 −λ)(1−E[X])+

λE[X], µ̄2) at which hc(p∗) = hr(t∗), i.e., µ0
2 ∈K. Then we have hc(p∗)>hr(t∗) for all µ2 >µ0

2, and hc(p∗)<

hr(t∗) for all (µ1 − λ)(1−E[X]) + λE[X]≤ µ2 < µ0
2. Otherwise, hc(p∗)> hr(t∗) always holds. Next, in Part

(a.1) we show that when 1− t∗ +F (t∗)− t∗(1− f(t∗))< 0, hc(p∗)>hr(t∗). In Part (a.2) we show that when

1− t∗ +F (t∗)− t∗(1− f(t∗))≥ 0 and hc(p∗)≥ hr(t∗), hc(p∗)−hr(t∗) keeps being positive as µ2 increases.

(a.1) When 1− t∗+F (t∗)− t∗(1−f(t∗))< 0, we show that hc(p∗)>hr(t∗). This proof uses several results

that are shown later. By the proof of Proposition 5 and Proposition 6, we know 1) hr(t) is a strictly convex

function of t and t̄ is its argmin; 2) 1− t∗ +F (t∗)− t∗(1− f(t∗))< 0⇒ (1− f(t∗))µ1 −µ2 > 0⇒ t̄ < t∗ < p∗,

where t∗ < p∗ is the result proved in the subsection 2b.1. These two results imply that t∗ and p∗ both lie

in the interval on which hr(t) is increasing. Thus we have hr(p∗)>hr(t∗). This result together with Lemma

B.4 below implies that hc(p∗)≥ hr(p∗)>hr(t∗).
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Lemma B.4 hc(p)≥ hr(t) for all p= t.

The proof of Lemma (B.4) is provided in Section B.6.1.

(a.2) When 1− t∗ +F (t∗)− t∗(1− f(t∗))≥ 0, we show that if at some µ2, we have hc(p∗)≥ hr(t∗), then

as µ2 increases, hc(p∗)−hr(t∗) keeps being positive. First, we calculate

hc(p∗)−hr(t∗) =
p∗

µ1 −λp∗ +
1− p∗ + p∗E[X]

µ2 −λ(1− p∗ + p∗E[X])
−
(

t∗

µ1 −λt∗
+

1− t∗ +F (t∗)

µ2 −λ(1− t∗ +F (t∗))

)
=

1

µ2 −λ(1− p∗ + p∗E[X])
− 1+F (t∗)− t∗f(t∗)

µ2 −λ(1− t∗ +F (t∗))

=
µ2 −λ(1− t∗ +F (t∗))− (1+F (t∗)− t∗f(t∗))(µ2 −λ(1− p∗ + p∗E[X]))

(µ2 −λ(1− p∗ + p∗E[X]))(µ2 −λ(1− t∗ +F (t∗)))
. (B.9)

Under stability conditions, the denominator of (B.9) is non-negative, so we focus on the sign of the numerator.

Let

∆W (µ2) = µ2 −λ(1− t∗ +F (t∗))− (1+F (t∗)− t∗f(t∗))(µ2 −λ(1− p∗ + p∗E[X]))

denotes the numerator, then

∂∆W (µ2)

∂µ2

=1− (1+F (t∗)− t∗f(t∗))

(
1+λ(1−E[X])

∂p∗

∂µ2

)
(B.10)

+λ(1− f(t∗))
∂t∗

∂µ2

+ t∗f ′(t∗)(µ2 −λ(1− p∗ + p∗E[X]))
∂t∗

∂µ2

. (B.11)

We show that if hc(p∗)≥ hr(t∗), then ∂∆W (µ2)/∂µ2 > 0, i.e., ∆W (µ2) increases in µ2. To this end, we show

(B.10)+(B.11)> 0.

Because ∂p∗/∂µ2 =−1/(2λ(1−E[X])), and 1+F (t∗)− t∗f(t∗)< 1 for all t∗ > 0, then we have

(B.10) = 1− 1

2
(1+F (t∗)− t∗f(t∗))>

1

2
.

We show (B.11)≥−1/2. From Equation (B.8), we know ∂t∗/∂µ2 =−1/(2λ(1− f(t∗))+ (µ1 −λt∗)f ′(t∗)).

In addition, by Equation (B.3), µ2 −λ(1− p∗ + p∗E[X]) = (µ1 −λp∗)(1−E[X]), so that (B.11) is equivalent

to

−λ(1− f(t∗))+ t∗f ′(t∗)(µ1 −λp∗)(1−E[X])

2λ(1− f(t∗))+ (µ1 −λt∗)f ′(t∗)
. (B.12)

Lemma B.5 below shows that, when hc(p∗)≥ hr(t∗), term (B.12)≥−1/2.

Lemma B.5 When 1− t∗ +F (t∗)− t∗(1− f(t∗))≥ 0 and hc(p∗)≥ hr(t∗), term (B.12)≥− 1
2
.

The proof of Lemma (B.5) is provided in Section B.6.1.

Next, we show that when µ2 = (µ1 −λ)(1−E[X]) +λE[X], it is possible that hc(p∗)<hr(t∗). If so, there

exists a unique µ0
2 ∈ [(µ1 − λ)(1 − E[X]) + λE[X], µ̄2) such that µ0

2 ∈ K, i.e., hc(p∗) = hr(t∗). Otherwise,

hc(p∗)>hr(t∗) always holds.

Assume that at µ2 = (µ1 −λ)(1−E[X])+λE[X], hc(p∗)<hr(t∗), recall in Case 2a.2, we prove that when

µ2 = µ̄2, h
c(p∗)>hr(t∗), thus there must be at least one µ0

2 under which hc(p∗) = hr(t∗), i.e., µ0
2 ∈K. If such

µ0
2 exists, we next prove that it is unique, by proving that hc(p∗) > hr(t∗) for all µ2 > µ0

2. Recall that at

µ0
2, h

c(p∗) = hr(t∗). As µ2 increases, if 1− t∗ +F (t∗)− t∗(1− f(t∗))< 0, then as by (a.1) hc(p∗)> hr(t∗); if
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1− t∗ +F (t∗)− t∗(1− f(t∗))≥ 0, then by (a.2) the value of hc(p∗)− hr(t∗) is positive. Thus hc(p∗)>hr(t∗)

always holds for all µ2 > µ0
2. Assume now that at µ2 = (µ1 − λ)(1− E[X]) + λE[X], hc(p∗) > hr(t∗), then

following the same proof, hc(p∗)>hr(t∗) holds for all (µ1 −λ)(1−E[X]) +λE[X]≤ µ2 < µ̄2.

Notice that if µ0
2 exists, because of its uniqueness, we have µ0

2 = µ̃2. If such µ0
2 does not exist, we show in

Case (b) that when µ2 < (µ1 −λ)(1−E[X]) +λE[X], µ̃2 exists.

(b) When µ2 < (µ1 − λ)(1−E[X]) + λE[X], p∗ = 1> t∗. To simplify the notations, we let β = µ2/λ and

ϕ= µ1/λ, the average waiting time function is reduced to

hc(p∗) =
1

µ1 −λ
+

E[X]

µ2 −λE[X]
= λ

(
1

ϕ− 1
+

E[X]

β−E[X]

)
, (B.13)

and

hr(t∗) =
t∗

µ1 −λt∗
+

1− t∗ +F (t∗)

µ2 −λ(1− t∗ +F (t∗))
= λ

(
t∗

ϕ− t∗
+

1− t∗ +F (t∗)

β− (1− t∗ +F (t∗))

)
. (B.14)

Consider the difference ∆V (µ2) = hc(p∗) − hr(t∗). We prove that when t∗ = 0, ∆V (µ2) > 0, and when

t∗ → 1, ∆V (µ2)< 0. Therefore, there exists at least one t∗ ∈ (0,1) at which ∆V (µ2) = 0.

By Equation (B.7), we have β = 1− t∗ +F (t∗)+ (ϕ− t∗)(1− f(t∗)). When t∗ = 0,

∆V (µ2) = λ

(
1

ϕ− 1
+

E[X]

β−E[X]
−
(

t∗

ϕ− t∗
+

1− t∗ +F (t∗)

β− (1− t∗ +F (t∗))

))
= λ

(
1

ϕ− 1
+

E[X]

β−E[X]
− 1

ϕ

)
> 0.

When t∗ → 1,

∆V (µ2) = λ

(
1

ϕ− 1
+

E[X]

β−E[X]
−
(

t∗

ϕ− t∗
+

1− t∗ +F (t∗)

β− (1− t∗ +F (t∗))

))
= λ

(
E[X]

1− t∗ +F (t∗)+ (ϕ− t∗)(1− f(t∗))−E[X]
− 1− t∗ +F (t∗)

(ϕ− t∗)(1− f(t∗))

)
=− λE[X]

2f ′(1)(ϕ− 1)2
< 0,

where the last equality is by Lemma B.6 below. The strictly less than 0 is because, by the definition of f ,

we must have f ′(1)> 0 and finite.

Lemma B.6 For fixed ϕ> 1,

E[X]

1− t+F (t)+ (ϕ− t)(1− f(t))−E[X]
− 1− t+F (t)

(ϕ− t)(1− f(t))
→− E[X]

2f ′(1)(ϕ− 1)2
as t→ 1.

The proof of Lemma (B.6) is provided in Section B.6.1.

We then combine this result with the result we obtain in Part (a) to conclude that there exists µ̃2 such

that hc(p∗) ≥ hr(t∗) when µ2 ≥ µ̃2, and when λE[X] < µ2 < µ̃2, there exists µ̂2 such that hc(p∗) < hr(t∗)

when λE[X]<µ2 < µ̂2.

If at µ2 = (µ1 − λ)(1−E[X]) + λE[X], we have hc(p∗)≤ hr(t∗), then by the conclusion in Part (a), there

exists a unique µ2 ≥ (µ1 − λ)(1−E[X]) + λE[X] that belongs to the set K and this µ2 is µ̃2, which can be

obtained by solving Equation (B.9) = 0. In addition, because at µ2 → λE[X], we have hc(p∗)< hr(t∗), it is

not guaranteed that µ2 < (µ1−λ)(1−E[X])+λE[X] that belongs to the set K exists. If there is no such µ2,

we have K being singleton set only containing µ̃2. In this case, we have hc(p∗)≥ hr(t∗) when µ2 ≥ µ̃2, and

vice versa. Otherwise, there might be a set of such µ2 ∈K. Because µ̂2 = infK, we must have µ̂2 < µ̃2, and
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hc(p∗)≥ hr(t∗) when µ2 ≥ µ̃2, and hc(p∗)<hr(t∗) when µ2 < µ̂2. Notice that µ̂2 must be strictly greater than

λE[X] because hr(t∗)−hc(p∗) is strictly greater than 0 when µ2 → λE[X], both p∗ and t∗ are continuous in

µ2, and both hc(·) and hr(·) are continuous functions.

If at µ2 = (µ1−λ)(1−E[X])+λE[X], we still have hc(p∗)>hr(t∗), then by the conclusion in Part (a), there

exists no µ2 ≥ (µ1−λ)(1−E[X])+λE[X] that belongs to the set K. However, because at µ2 → λE[X], we have

hc(p∗)<hr(t∗), there is a change of sign when µ2 belongs to the interval (λE[X], (µ1−λ)(1−E[X])+λE[X]).

So there must be at least one µ2 ∈ (λE[X], (µ1−λ)(1−E[X])+λE[X]) that belongs to the set K. The exact

set K can be obtained by solving (B.13) = (B.14), and µ̃2 and µ̂2 can be obtained afterwards (µ̃2 and µ̂2 can

be equal). Then we have hc(p∗)≥ hr(t∗) when µ2 ≥ µ̃2, and hc(p∗)<hr(t∗) when µ2 < µ̂2.

We then prove that by fixing f and λ, the change of µ̃2 is continuous with respect to the change of µ1. By

the discussion above, µ̃2 is obtained either by solving Equation (B.9) = 0 if it has a solution or by solving

(B.13) = (B.14) if Equation (B.9) = 0 has no solution. Within each Equation, µ̃2 is continuous with respect

to µ1. These two equations coincide when p∗ = 1, and p∗ is continuous with respect to µ1 as well. Q.E.D.

B.6.1. Auxiliary Results Used in the Proofs of Theorem 1 and Proposition 4

Proof of Lemma B.2: At t∗ = f−1(E[X]), we have t∗ solves

(µ1 −λt∗)(1−E[X]) = µ2 −λ(1− t∗ +F (t∗)). (B.15)

p∗ solves

(µ1 −λp∗)(1−E[X]) = µ2 −λ(1− p∗ + p∗E[X]). (B.16)

The proof is by contradiction. First, if p∗ = t∗, then the LHS of (B.15) and (B.16) are the same. But the

RHS of (B.15) is greater than the RHS of (B.16) since p∗E[X]> F (p∗). Contradiction. Second, if p∗ < t∗,

Compared with both sides of Equation (B.15), the LHS of (B.16) increases and the RHS of (B.16) decreases.

It is impossible that Equality (B.16) holds. Contradiction. Q.E.D.

Proof of Lemma B.3: When t∗ > f−1(E[X]), we have t∗ solves

(µ1 −λt∗)(1− f(t∗)) = µ2 −λ(1− t∗ +F (t∗)). (B.17)

p∗ (p∗ ̸= 1) solves

(µ1 −λp∗)(1−E[X]) = µ2 −λ(1− p∗ + p∗E[X]). (B.18)

The proof is by contradiction. Suppose p∗ ≤ t∗, then the LHS of (B.17) is strictly less than the LHS of

(B.18). But the RHS of (B.17) is strictly greater than the RHS of (B.18) because µ2−λ(1− p∗ + p∗E[X])<

µ2−λ(1− p∗ +F (p∗))<µ2−λ(1− t∗ +F (t∗)). Thus t∗ and p∗ could not be the solutions of equation (B.17)

and equation (B.18) at the same time. Contradiction. Q.E.D.

Proof of Lemma B.4: We prove this result by showing that hc(p)−hr(t)≥ 0, ∀p= t.

hc(p)−hr(t) =
1

µ2 −λ(1− p+ pE[X])
− 1+F (t)− tf(t)

µ2 −λ(1− t+F (t))
≥ 0.

where the inequality is because 1+F (t)− tf(t)≤ 1 and 1−p+pE[X]≥ 1− t+F (t) ∀p= t, because pE[X]≥

F (t). Q.E.D.
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Proof of Lemma B.5: When hc(p∗)≥ hr(t∗), we have

1

µ2 −λ(1− p∗ + p∗E[X])
≥ 1+F (t∗)− t∗f(t∗)

µ2 −λ(1− t∗ +F (t∗))
,

which is equivalent to

µ2 −λ(1− p∗ + p∗E[X])≤ µ2 −λ(1− t∗ +F (t∗))

1+F (t∗)− t∗f(t∗)

⇒ (µ1 −λp∗)(1−E[X])≤ (µ1 −λt∗)(1− f(t∗))

1+F (t∗)− t∗f(t∗)
by the definitions of p∗ and t∗

≤ (µ1 −λt∗)(1− f(t∗))

2t∗(1− f(t∗))
⇔ (µ1 −λp∗)(1−E[X])≤ (µ1 −λt∗)(1− f(t∗))

2t∗(1− f(t∗))
.

The third inequality is because 1+F (t∗)− t∗f(t∗) = 1− t∗+F (t∗)+ t∗(1−f(t∗))≥ 2t∗(1−f(t∗)) by assump-

tion. Rearranging the last inequality, we get t∗(µ1 − λp∗)(1−E[X])≤ (µ1 −λt∗)/2⇔ t∗f ′(t∗)(µ1 − λp∗)(1−
E[X])≤ (µ1 −λt∗)f ′(t∗)/2⇒ (B.12)≥−1/2. Q.E.D.

Proof of Lemma B.6: Let ω(t) = 1 − t + F (t) and σ(t) = (ϕ − t)(1 − f(t)). Then we have ω′(t) =

−(1− f(t)), ω′′(t) = f ′(t), σ′(t) =−(1− f(t))− (ϕ− t)f ′(t), and σ′′(t) = 2f ′(t)− (ϕ− t)f ′′(t). As t→ 1, we

have ω(1) =E[X], ω′(1) = 0, ω′′(1) = f ′(1), σ(1) = 0, σ′(1) =−(ϕ−1)f ′(1), and σ′′(1) = 2f ′(1)−(ϕ−1)f ′′(1).

Thus we get

E[X]

1− t+F (t)+ (ϕ− t)(1− f(t))−E[X]
− 1− t+F (t)

(ϕ− t)(1− f(t))
=−ω(ω+σ−E[X])−σE[X]

σ(ω+σ−E[X])
. (B.19)

Apply L’Hospital’s rule twice on (B.19) and plug in those quantities, we get

−ω′′(ω+σ−E[X]) + 2ω′(ω′ +σ′)+ω(ω′′ +σ′′)−σ′′E[X]

σ′′(ω+σ−E[X]) + 2σ′(σ′ +ω′)+σ(ω′′ +σ′′)
=−ωω′′

2σ′2 =− E[X]

2f ′(1)(ϕ− 1)2
,

at t= 1. Q.E.D.

B.7. Proof of Proposition 5

Proof: To show that the first best is of threshold type, we first express the explicit formula for the average

steady-state waiting time E[W (g, t)] under routing strategy g below:

E[W (g, t)] =
p

µ1 −λp
+

1− p+D(p)

µ2 −λ(1− p+D(p))
,

where p=
∫ 1

0
g(x)dx and D(p) =

∫ 1

0
g(x)f(x)dx. We show that for any g that leads to the same realization of

p, the one-threshold type of strategy always outperforms or achieves comparable results. Recall the average

waiting time under threshold strategy t has been defined as

hfb(t) =
t

µ1 −λt
+

1− t+F (t)

µ2 −λ(1− t+F (t))
.

Fixing g, we show hfb(p)≤E[W (g, t)]. It is enough to show

1− p+F (p)

µ2 −λ(1− p+F (p))
≤ 1− p+D(p)

µ2 −λ(1− p+D(p))
,

which is equivalent to show F (p)≤D(p). Because f is strictly increasing, we have D(p) =
∫ 1

0
g(x)f(x)dx≥∫ 1

0
1x≤pf(x)dx=

∫ p

0
f(x)dx= F (p). Thus the result holds.

To find the first solution, we need to find the strategy t ∈ [0,1] that minimizes hfb(t). To do so, we first

prove that hfb(t) is strictly convex in t. Under the refined stability conditions, the derivative of the first term
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of hfb(t) is µ1/(µ1 −λt)2 > 0, and the second derivative of it is 2λµ1(µ1 −λt)/(µ1 −λt)4 > 0. So the first

term is strictly convex. The derivative of the second term of hfb(t) is (f(t)− 1)µ2/(µ2 −λ(1− t+F (t)))2 ≤ 0,

and the second derivative of it is

µ2(µ2 −λ(1− t+F (t)))(f ′(t)(µ2 −λ(1− t+F (t)))+ 2λ(f(t)− 1)2)

(µ2 −λ(1− t+F (t)))4
> 0

since f ′(t)> 0, thus the second term is also strictly convex. By the property of the strictly convex functions,

the function hfb(t) is also strictly convex. Thus a minimizer t̄ that minimizes hfb(t) always exists and is

unique.

The derivative of hfb(t) is

hfb′(t) =
µ1

(µ1 −λt)2
+

(f(t)− 1)µ2

(µ2 −λ(1− t+F (t)))2
. (B.20)

Notice that the minimizer t̄ should be strictly less than the upper bound of t that satisfies the refined stability

condition, i.e., t̄ <min(µ1/λ,1), because hfb′(µ1/λ) =∞ and hfb′(1) = µ1

(µ1−λ)2
> 0.

Case 1. When λ ≤ µ2 −
√
µ1µ2, t̄ = 0 is the first best solution. This is because by the strict convexity

property, t= 0 is the minimizer if and only if hfb′(0)≥ 0⇔ 1/µ1 −µ2/(µ2 −λ)2 ≥ 0⇔ λ≤ µ2 −
√
µ1µ2.

Case 2. When λ > µ2 −
√
µ1µ2, we have hfb′(0)< 0. In addition, because f(t)− 1< 0 at t= ts, where ts is

the solution of µ2−λ(1− t+F (t)) = 0, we have hfb′(ts) =−∞. Thus at the lower bound of t that satisfies the

refined stability condition, we always have hfb′ < 0, and at the upper bound of t, we always have hfb′ > 0. So

there must be a t̄∈ (0,1) that uniquely solves Equation (B.20) = 0 and t̄ is the first best solution. Q.E.D.

B.8. Proof of Proposition 6

Proof: Case 1. When µ1 ≤ µ2,

1.1 By Proposition 2 and Proposition 5, when 0 < λ ≤ µ2 − √
µ1µ2, we always have t∗ = t̄ = 0. When

µ2 −
√
µ1µ2 <λ≤ µ2 −µ1, we always have t̄ > t∗ = 0.

1.2 Otherwise, when λ > µ2 −
√
µ1µ2, then t∗ > 0 and t̄ > 0, plugging t∗ from Equation (B.7) into (B.20),

we get

µ1

(µ1 −λt∗)2
+

(f(t∗)− 1)µ2

(µ2 − (1− t∗ +F (t∗))λ)2
=

µ1

(µ1 −λt∗)2
+

(f(t∗)− 1)µ2

(1− f(t∗))2(µ1 −λt∗)2

=
(1− f(t∗))µ1 −µ2

(1− f(t∗))(µ1 −λt∗)2
. (B.21)

Because hfb is strictly, and t̄ > 0 is the minimizer of hfb, if at t= t∗ its derivative (B.21)≤ 0, we must have

t∗ ≤ t̄; otherwise, we must have t∗ > t̄. However, when µ1 ≤ µ2, we always have (1− f(t∗))µ1−µ2 ≤ 0, which

implies (B.21)≤ 0, so we conclude that t∗ ≤ t̄.

Case 2. When µ1 >µ2, Lemma B.7 gives the comparison between t∗ and t̄ based on the sign of (B.21).

Lemma B.7 If (1− f(t∗))µ1 <µ2, t
∗ < t̄; if (1− f(t∗))µ1 >µ2, t

∗ > t̄; if (1− f(t∗))µ1 = µ2, t
∗ = t̄.

The proof of Lemma B.7 is simple and we skip it.

We then refine the criterion provided in Lemma B.7 to get rid of t∗. To do that, we first analyze the

sensitivity of t∗ with respect to λ. We rewrite Equation (B.7) as

µ2 − (1− f(t∗))µ1 = (1− t∗ +F (t∗)− (1− f(t∗)t∗)λ. (B.22)
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Take the derivative of (B.22) with respect to λ on both sides, we get

((µ1 −λt∗)f ′(t∗)+ 2λ(1− f(t∗)))
∂t∗

∂λ
= 1− t∗ +F (t∗)− (1− f(t∗))t∗.

Note (µ1 − λt∗)f ′(t∗) + 2λ(1− f(t∗))> 0. If 1− t∗ +F (t∗)> (1− f(t∗))t∗, we have ∂t∗/∂λ > 0. If 1− t∗ +

F (t∗)< (1− f(t∗))t∗, we have ∂t∗/∂λ< 0. If 1− t∗ +F (t∗) = (1− f(t∗))t∗, we have ∂t∗/∂λ= 0.

When λ → 0, according to Equation (B.22), t̂ that solves µ2 − (1 − f(t̂))µ1 = 0 is the refined patient

equilibrium. If at t = t̂, 1− t̂+ F (t̂)− (1− f(t̂))t̂ < 0, then by the sensitivity analysis above, ∂t̂/∂λ < 0, t̂

decreases with respect to λ. As λ increases, t̂ decreases, and thus the LHS of Equation (B.22) decreases and

its value becomes strictly less than 0. So the new equilibrium that solves (B.22) still satisfies 1− t∗+F (t∗)−

(1− f(t∗)t∗ < 0. This implies that as λ increases, we always have t∗ decreases, and thus µ2− (1− f(t∗))µ1 <

µ2 − (1− f(t̂))µ1 = 0 always holds. By Lemma B.7, we have t∗ > t̄.

The same type of argument can be applied to the case when 1− t̂+F (t̂)− (1− f(t̂))t̂ > 0.

If at t = t̂, 1 − t̂ + F (t̂) − (1 − f(t̂))t̂ = 0, then we have ∂t̂/∂λ = 0. This implies the change of λ does

not change the equilibrium. This trend continues as λ increases. So by Lemma B.7, we always have t∗ = t̄

regardless of λ. Q.E.D.

B.9. Proof of Theorem 2

Proof: When (λ,µ1, µ2, f)∈ Srefined, we first show that patients’ equilibrium strategy under priority rule

q ∈ (0,1] is of threshold type. To show that, suppose all patients apply a mixed strategy in choosing between

the two services. Let g : [0,1]→ [0,1] denote patients’ strategy and let p=
∫ 1

0
g(x)dx. In addition, suppose

there are two classes, and the expected waiting time of class 1 is denoted by T1 and the expected waiting

time of class 2 is denoted by T2. By definition, because patients are indifferent between the queues, the

expected waiting times at both queues should be the same for all types of patients. We discuss two cases.

First, under a policy that prioritizes the follow-up patients with probability q over the other patients at the

in-person service, the mixed strategy equilibrium for all types should satisfy

1

µ1 −λp
+ f(t)(qT1(p)+ (1− q)T2(p)) = T2(p),∀t∈ [0,1]. (B.23)

The LHS of Equation (B.23) is the expected waiting time at the telemedicine queue and the RHS of Equation

(B.23) is the expected waiting time at the in-person queue.

For fixed strategy g, the LHS is strictly increasing while the RHS is a constant, thus if the two lines

intersect, there is at most one intersection, which we denote as t(q).

Case 1. If t(q)∈ [0,1] exists under strategy g, then because f is strictly increasing, we have LHS<RHS for

all t < t(q), and LHS>RHS for all t > t(q). That is, all types t < t(q) deviate to the telemedicine service and

all types t > t(q) deviate to the in-person service. Thus g(t) = 1 for t≤ t(q), g(t) = 0 for t > t(q), and p= t(q)

is the equilibrium.

Case 2. If LHS<RHS for all t under strategy g, then we define t(q) = 1, and g(t) = 1 for t ≤ t(q) is the

equilibrium.

Case 3. If LHS>RHS for all t under strategy g, then we define t(q) = 0, and g(t) = 0 for t ≥ t(q) is the

equilibrium.
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The same type of proof can be applied to the case of prioritizing with probability q the in-person patients

in the in-person queue over the follow-up patients. Then, Equation (B.23) is replaced by

1

µ1 −λp
+ f(t)T2(p) = qT1(p)+ (1− q)T2(p),

where the LHS is the expected waiting time at the telemedicine queue and the RHS is the expected waiting

time at the in-person queue.

We then prove that the one-threshold type of equilibrium always exists under priority rule q ∈ (0,1], and

we derive the optimal q∗ that can induce the first best solution.

Suppose the service intensity for class 1 patient is ρ1 and the service intensity for class 2 patient is ρ2,

under the assumption of M/M/1 queue, the expected waiting time of each class is:

T1 =
1+ ρ2

µ2(1− ρ1)
,

T2 =
1− ρ1(1− ρ1 − ρ2)

µ2(1− ρ1)(1− ρ1 − ρ2)
.

The analysis can be divided into two cases.

Case 1. When t∗ < t̄, we prioritize the follow-up patients with probability q ∈ (0,1] over the other patients

in the in-person service. Then the service intensity for the class 1 patients equals ρ1 = λqF (t)/µ2, and the

service intensity for the class 2 patients equals ρ2 = λ(1− t+(1− q)F (t))/µ2, where t is the threshold. For

a given q, the Nash equilibrium threshold t(q)∈ (0,1) should satisfy:

1

µ1 −λt
+ f(t)(qT1 +(1− q)T2) = T2. (B.24)

Rearranging Equation (B.24), we get

q=
µ2
2(µ2 −λ(1− t+F (t)− (1− f(t))(µ1 −λt)))

λ (µ2F (t)(µ2 −λ(1− t+F (t)− (1− f(t))(µ1 −λt)))+λ(1− t+F (t))((1− t)f(t)+F (t))(µ1 −λt))
.

(B.25)

1.1 When 0= t∗ < t̄, i.e., λ+
√
µ1µ2 >µ2 ≥ λ+µ1, we prove that the priority rule could not improve the

patient’s equilibrium. Equivalently, we prove Equation (B.24) has no solution t(q)∈ (0,1), i.e., t(q) = 0 is the

equilibrium.

As before, we denote β = µ2/λ and ϕ= µ1/λ. Then, Equation (B.25) reduces to

q=
β2(β− (1− t+F (t))− (1− f(t))(ϕ− t))

βF (t)(β− (1− t+F (t))− (1− f(t))(ϕ− t))+ (1− t+F (t))((1− t)f(t)+F (t))(ϕ− t)
. (B.26)

Let

α=
1

q
=

F (t)

β
+

(1− t+F (t))((1− t)f(t)+F (t))(ϕ− t)

β2(β− (1− t+F (t))− (1− f(t))(ϕ− t))
, α≥ 1. (B.27)

We show that when β ≥ ϕ+1, i.e., µ2 ≥ λ+ µ1, Equation (B.27) has no solution t ∈ [0,1] for all α≥ 1. We

prove it by showing that (B.27)< 1, which is equivalent to

(1− t+F (t)))(ϕ− t)

β− (1− t+F (t))− (1− f(t))(ϕ− t)
<

β(β−F (t))

(1− t)f(t)+F (t)
, (B.28)

for all t∈ [0,1]. Since β ≥ ϕ+1, we have the denominators β− (1− t+F (t))− (1−f(t))(ϕ− t)≥ (1− t)f(t)+

F (t) because β−(1− t+F (t))−(1−f(t))(ϕ− t)≥ ϕ+1−(1− t+F (t))−(1−f(t))(ϕ− t)≥ (1− t)f(t)+F (t),
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where the second inequality is because ϕ+1−(1−t+F (t))−(1−f(t))(ϕ−t)−(1−t)f(t)−F (t) increases in t,

and at t= 0, its value is 0. In addition, we have the numerators (1− t+F (t)))(ϕ− t)< (ϕ+1)(ϕ+1−F (t))≤

β(β−F (t)), where the first inequality is because 1− t+F (t)<ϕ+1 and ϕ− t < ϕ+1−F (t). Therefore, the

inequality holds, and thus, there is no q ∈ (0,1] that satisfies (B.26) for all t∈ [0,1]. In this case, the LHS of

(B.24)>the RHS of (B.24), meaning the expected waiting time at the telemedicine queue is always greater

than the at the in-person queue. Thus, t(q) = 0 is the equilibrium for all ∈ (0,1].

1.2 When 0< t∗ < t̄, first, we denote q̃ by plugging t= t̄ in Equation (B.25). Then,

q̃=
µ2
2(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))

λ (µ2F (t̄)(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))+λ(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄))
.

(B.29)

With the definition of q̃, Lemma B.8 below proves that there always exists a threshold type of equilibrium,

denoted by t∗(q), which is increasing in q. At q= 0, we have t∗(0) = t∗ (the refined patient equilibrium), and

at q = q̃, it can be verified that we have t∗(q̃) = t̄ (the system’s first best), which implies that q̃ induces the

first best solution.

Lemma B.8 For each 0≤ q < q̃, there exists t∗(q) solving Equation (B.24) such that t∗(q)∈ [t∗, t̄), and t∗(q)

increases with respect to q.

The proof of Lemma (B.8) is provided in Section B.9.1.

We then derive the conditions under which a valid q̃ that induces the first best solution exists, i.e.,

0 < q̃ ≤ 1. Recall by (B.7), we have 1/(µ1 −λt∗) = (1− f(t∗))/(µ2 −λ(1− t∗ +F (t∗))), where the LHS is

increasing in t∗ and the RHS is decreasing in t∗. Because t∗ < t̄, replacing t∗ with t̄ on both sides, we get

LHS>RHS, i.e., 1/(µ1 −λt̄)> (1− f(t̄))/(µ2 −λ(1− t̄+F (t̄))). Rearranging it, we get µ2−λ(1− t̄+F (t̄))−

(1− f(t̄))(µ1 − λt̄) > 0. Thus both the denominator and numerator of q̃ are positive. To ensure a valid q̃

exists, the denominator of q̃ needs to be greater than (or equal to) the numerator, as shown below.

λ (µ2F (t̄)(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))+λ(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄))

≥µ2
2(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))

⇔λ2(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄)

≥µ2(µ2 −λF (t̄))(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄))).

The above condition ensures that there exists a valid 0< q̃ ≤ 1 at which t̄ is a solution to Equation (B.24),

i.e., the system can be coordinated by q̃, and q∗ = q̃. Otherwise, when q̃ > 1 is needed to coordinate the

system, the monotonicity result in Lemma B.8 implies that q∗ = 1.

Case 2. When t∗ > t̄, we prioritize the in-person patients with probability q ∈ (0,1] over the follow-up

patients at the in-person service. Then the service intensity for class 1 patients equals ρ1 = λq(1− t)/µ2, and

the service intensity for class 2 patients equals ρ2 = λ((1− q)(1− t)+F (t))/µ2, where t is the threshold. For

a given q, the Nash equilibrium threshold strategy t(q)∈ (0,1) should satisfy:

1

µ1 −λt
+ f(t)T2 = qT1 +(1− q)T2. (B.30)
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Rearranging Equation (B.30), we get

q=
µ2
2(µ2 −λ(1− t+F (t))− (1− f(t))(µ1 −λt))

λ (µ2(1− t)(µ2 −λ(1− t+F (t))− (1− f(t))(µ1 −λt))−λ(1− t+F (t))((1− t)f(t)+F (t))(µ1 −λt))
.

(B.31)

Following the same idea, we define

q̃=
µ2
2(µ2 −λ(1− t̄+F (t̄))− (1− f(t̄))(µ1 −λt̄))

λ (µ2(1− t̄)(µ2 −λ(1− t̄+F (t̄))− (1− f(t̄))(µ1 −λt̄))−λ(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄))
.

(B.32)

Again, t̄ is the equilibrium solution under priority rule q= q̃. In addition, we prove the following Lemma.

Lemma B.9 For each 0≤ q < q̃, there exists t∗(q) solving Equation (B.30) such that t∗(q)∈ (t̄, t∗], and t∗(q)

decreases with respect to q.

The proof of Lemma (B.9) is provided in Section B.9.1.

We then derive the conditions under which a valid q̃ that induces the first best solution exists, i.e., 0< q̃≤ 1.

Because now t∗ > t̄, by (B.7), we get µ2−λ(1− t̄+F (t̄))− (1−f(t̄))(µ1−λt̄)< 0. Thus both the denominator

and numerator of q̃ are negative. To ensure a valid q̃ exists, the denominator of q̃ needs to be less than (or

equal to) the numerator, as shown below.

λ (µ2(1− t̄)(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))−λ(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄))

≤µ2
2(µ2 −λ(1− t̄+F (t̄)− (1− f(t̄))(µ1 −λt̄)))

⇔λ2(1− t̄+F (t̄))((1− t̄)f(t̄)+F (t̄))(µ1 −λt̄)

≥µ2(λ(1− t̄)−µ2)(µ2 −λ(1− t̄+F (t̄))− (1− f(t̄))(µ1 −λt̄)).

The above condition ensures that there exists a valid 0< q̃ ≤ 1 at which t̄ is a solution to Equation (B.30),

i.e., the system can be coordinated by q̃, and q∗ = q̃. Otherwise, when q̃ > 1 is needed to coordinate the

system, the monotonicity result in Lemma B.9 implies that q∗ = 1. Q.E.D.

B.9.1. Auxiliary Results Used in the Proofs of Theorem 2

Proof of Lemma B.8: By (B.6), t∗ has to satisfy

µ2 −λ(1− t+F (t))

µ1 −λt
= 1− f(t), (B.33)

and by (B.20) = 0, t̄ has to satisfy

µ2 −λ(1− t+F (t))

µ1 −λt
=

√
(1− f(t))µ2

µ1

. (B.34)

The LHS of (B.33) and (B.34) are obviously decreasing with respect to t.

With the priority rule, (B.25) can be reduced to

µ2 −λ(1− t+F (t))

µ1 −λt
= 1− f(t)+

qλ2(1− t+F (t))((1− t)f(t)+F (t))

µ2(µ2 − qλF (t))
. (B.35)

Notice that the LHS of Equation (B.33)(B.34)(B.35) are the same, we define it as

B(t) :=
µ2 −λ(1− t+F (t))

µ1 −λt
.
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Take the derivative of B(t) with respect to t, we get

∂B(t)

∂t
=

λ(1− f(t))(µ1 −λt)+λ(µ2 −λ(1− t+F (t)))

(µ1 −λt)2
> 0.

We then show that if 0 ≤ q < q̃, we always have a t∗(q) ∈ [t∗, t̄) exists and it increases in q. That is, we

show for two arbitrary priority parameters q1 and q2 with 0< q1 < q2, we have t∗(q1), t
∗(q2) both exist, and

t∗(q1)< t∗(q2). The proof is by induction.

First, at q = 0, obviously, we have t∗(q) = t∗. In addition, notice that the RHS of (B.35) subtract the

RHS of Equation (B.33) equals (qλ2(1− t+F (t))((1− t)f(t)+F (t)))/(µ2(µ2 − qλF (t)))> 0. Thus we have

the RHS of (B.35) greater than the RHS of Equation (B.33) for all t ∈ (0,1] satisfying the refined stability

condition. As q increases a little bit from 0, the new solution t∗(q) should exist and be strictly greater than

t∗. This is because

qλ2(1− t+F (t))((1− t)f(t)+F (t))

µ2(µ2 − qλF (t))
=

λ2(1− t+F (t))((1− t)f(t)+F (t))

µ2

(
µ2

q
−λF (t)

) ,

the denominator of the RHS goes to infinity when q is very small. Thus the RHS of (B.35) and the RHS of

Equation (B.33) do not differ much when q is close to 0. In addition, since B(t) is increasing in t and the

RHS of (B.33) is strictly decreasing in t, Equation (B.35) must have a solution and the solution must be

strictly greater than t∗.

Suppose at arbitrary q1 ∈ (0, q̃), we have that t∗(q1) ∈ [t∗, t̄) exists and t∗(q1) > t∗. We show that at

q2 ∈ (q1, q̃), there exists t∗(q2)∈ [t∗, t̄) such that t∗(q2)> t∗(q1).

(a) First, we show that under q = q2, at the point t= t∗(q1), we have the RHS of Equation (B.35)>LHS

of Equation (B.35). At t= t∗(q1), we have

(B(t)− (1− f(t)))µ2(µ2 − q1λF (t))> (B(t)− (1− f(t)))µ2(µ2 − q2λF (t)). (B.36)

because B(t)− (1− f(t))> 0 when t > t∗ and q1 < q2. So that at t= t∗(q1), we have

q2λ
2(1− t+F (t))((1− t)f(t)+F (t))> q1λ

2(1− t+F (t))((1− t)f(t)+F (t)) because q2 > q1

= (B(t)− (1− f(t)))µ2(µ2 − q1λF (t)) by the definition of t∗(q1)

> (B(t)− (1− f(t)))µ2(µ2 − q2λF (t)) by inequality (B.36)

⇒B(t)µ2(µ2 − q2λF (t))<µ2(µ2 − q2λF (t))(1− f(t))+ q2λ
2(1− t+F (t))((1− t)f(t)+F (t)).

Thus at t= t∗(q1) and q= q2, we have the RHS of Equation (B.35)>LHS of Equation (B.35).

(b) Next, we show that under q = q2, at the point t = t̄, we have the RHS of Equation (B.35)<LHS

of Equation (B.35). This is because at q = q̃ and t = t̄, by definition of q̃, we have the RHS of Equation

(B.35)=LHS of Equation (B.35) because Equation (B.25) and Equation (B.35) are equivalent. Because q2 < q̃,

by rearranging Equation (B.25) at t = t̄, we get the RHS of Equation (B.35)<LHS of Equation (B.35) at

q= q2.

Combining the results in Part (a) and Part (b), it must be true that there exists t∗(q2) ∈ (t∗(q1), t̄) that

solves Equation (B.35). Thus the induction result holds. Q.E.D.
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Proof of Lemma B.9: Following the same procedure as in the proof of Lemma B.8, with the priority

rule, (B.31) can be reduced to

µ2 −λ(1− t+F (t))

µ1 −λt
= 1− f(t)− qλ2(1− t+F (t))((1− t)f(t)+F (t))

µ2(µ2 − qλ(1− t))
. (B.37)

We then show that if 0 ≤ q < q̃, we always have a t∗(q) ∈ (t̄, t∗] exists and it decreases in q. That is, we

show for two arbitrary priority parameters q1 and q2 with 0< q1 < q2, we have t∗(q1), t
∗(q2) both exist, and

t∗(q1)> t∗(q2). The proof is by induction.

First, notice that at q = 0, we have t∗(q) = t∗. In addition, notice that the RHS of (B.37) subtract the

RHS of Equation (B.33) equals −(qλ2(1− t+ F (t))((1− t)f(t) + F (t)))/(µ2(µ2 − qλ(1− t)))< 0. Thus we

have the RHS of (B.37) less than the RHS of Equation (B.33) for all t∈ (0,1] satisfying the refined stability

condition. As q increases a little bit from 0, the new solution t∗(q) should exist and be strictly less than t∗.

This is because

−qλ2(1− t+F (t))((1− t)f(t)+F (t))

µ2(µ2 − qλ(1− t))
=−λ2(1− t+F (t))((1− t)f(t)+F (t))

µ2

(
µ2

q
−λ(1− t)

) ,

the denominator of the RHS goes to infinity when q is very small. Thus the RHS of (B.37) and the RHS of

Equation (B.33) do not differ much when q is close to 0. In addition, since B(t) is increasing in t and the

RHS of (B.33) is strictly decreasing in t, Equation (B.37) must have a solution and the solution must be

strictly less than t∗.

Suppose at arbitrary q1 ∈ (0, q̃), we have that t∗(q1) ∈ (t̄, t∗] exists and t∗(q1) < t∗. We show that at

q2 ∈ (q1, q̃), there exists t∗(q2)∈ (t̄, t∗] such that t∗(q2)< t∗(q1).

(a) First, we show that under q = q2, at the point t= t∗(q1), we have the RHS of Equation (B.37)<LHS

of Equation (B.37). At t= t∗(q1)< t∗, we have

(B(t)− (1− f(t)))µ2(µ2 − q1λ(1− t))< (B(t)− (1− f(t)))µ2(µ2 − q2λ(1− t)). (B.38)

because (B(t)− (1− f(t)))< 0 when t < t∗. So that at t= t∗(q1), we have

−q2λ
2(1− t+F (t))((1− t)f(t)+F (t))<−q1λ

2(1− t+F (t))((1− t)f(t)+F (t)) because q2 > q1

= (B(t)− (1− f(t)))µ2(µ2 − q1λ(1− t)) by the definition of t∗(q1)

< (B(t)− (1− f(t)))µ2(µ2 − q2λ(1− t)) by inequality (B.38)

⇒B(t)µ2(µ2 − q2λ(1− t))>µ2(µ2 − q2λ(1− t))(1− f(t))− q2λ
2(1− t+F (t))((1− t)f(t)+F (t)).

Thus at t= t∗(q1) and q= q2, we have the RHS of Equation (B.37)<LHS of Equation (B.37).

(b) Next, we show that under q = q2, at the point t = t̄, we have the RHS of Equation (B.37)>LHS

of Equation (B.37). This is because at q = q̃ and t = t̄, by definition of q̃, we have the RHS of Equation

(B.37)=LHS of Equation (B.37) because Equation (B.31) and Equation (B.37) are equivalent. Because q2 < q̃,

by rearranging Equation (B.31) at t = t̄, we get the RHS of Equation (B.37)>LHS of Equation (B.37) at

q= q2.

Combining the results in Part (a) and Part (b), it must be true that there exists t∗(q2) ∈ (t̄, t∗(q1)) that

solves Equation (B.37). Thus the induction result holds. Q.E.D.
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B.10. Proof of Proposition 7

Proof: We first state a Corollary that has been proved within the proofs of Lemma B.8 and Lemma B.9

above.

Corollary B.1 When t∗ < t̄, the solution t(q) to Equation (B.35) always satisfies t(q)≥ t∗ for all q ∈ [0,1].

When t∗ > t̄, the solution t(q) to Equation (B.37) always satisfies t(q)≤ t∗ for all q ∈ [0,1].

With Corollary B.1, we only need to show that the solutions under the priority rule are unique among all

t(q)≥ t∗ when t∗ < t̄, and among all t(q)≤ t∗ when t∗ > t̄. We start with the first case.

Case 1. When t∗ < t̄, recall (B.25) is

µ2(µ2 −λ(1− t+F (t)))(µ2 − qλF (t))

µ1 −λt

= µ2
2(1− (1− q)f(t))− q(µ2 −λ(1− t+F (t)))((µ2 +λ(1− t))f(t)+λF (t)). (B.39)

Define

A(t, q) :=
µ2(µ2 −λ(1− t+F (t)))(µ2 − qλF (t))

µ1 −λt
.

We take the derivative of the RHS of Equation (B.39) with respect to t, and get

−µ2
2(1− q)f(t)− qλ(1− f(t))((µ2 +λ(1− t))f(t)+λF (t))− q(µ2 −λ(1− t+F (t)))(µ2 +λ(1− t))f ′(t)< 0.

Hence, the RHS is strictly decreasing in t. We next take the derivative of A(t, q) with respect to t, and get

λµ2((µ2 −λ(1− t+F (t))+ (1− f(t))(µ1 −λt))(µ2 − qλF (t))− q(µ2 −λ(1− t+F (t)))(µ1 −λt)f(t))

(µ1 −λt)2
.

(B.40)

If (B.40) is non-negative, which implies that the LHS is increasing in t, we can conclude that only one

solution exists. (B.40)≥ 0 is equivalent to

q≤ µ2(µ2 −λ(1− t+F (t))+ (1− f(t))(µ1 −λt))

λF (t)(µ2 −λ(1− t+F (t))+ (1− f(t))(µ1 −λt))+ f(t)(µ2 −λ(1− t+F (t)))(µ1 −λt)
:= Y (t).

We need to show that Y (t)≥ q. We first show Y (t) is decreasing with respect to t. The numerator of Y ′(t) is

−µ2(µ1 −λt)f ′(t)f(t)(µ2 −λ(1− t+F (t)))(µ1 −λt)−
(
µ2(µ2 −λ(1− t+F (t))+ (1− f(t))(µ1 −λt))

)
×
(
λf(t)(1− f(t))(µ1 −λt)+ f ′(t)(µ2 −λ(1− t+F (t)))(µ1 −λt)+ f(t)λ(1− f(t))(µ1 −λt)

)
< 0,

which is strictly negative because all terms within the bracket are positive. Thus, Y (t) is decreasing in t.

Next, we derive the conditions under which Y (t) ≥ 1 so that Y (t) ≥ q for all q ∈ [0,1]. To this end, we

discuss the lower bound of inf Y (t). Notice that when µ1 ≤ λ, sup{t : 0 ≤ t ≤ 1, µ1 − λt > 0} = µ1/λ. Then

inf Y (t) = µ2/(λF (µ1/λ))≥ 1, because µ2−λ(1−µ1/λ+F (µ1/λ))≥ 0⇒ µ2 ≥ (λF (µ1/λ)). Otherwise, when

µ1 > λ, max{t : 0≤ t≤ 1, µ1 − λt > 0}= 1. At t= 1, Y (1) = µ2/(µ1 − (1− E[X])λ). Thus, if µ2/(µ1 − (1−

E[X])λ)≥ 1⇒ µ2 ≥ µ1 − (1−E[X])λ, we have inf Y (t)≥ 1.

To conclude, two cases can occur.

1.1 When µ1 ≤ λ or µ2 ≥ µ1 − (1− E[X])λ, A(t, q), the LHS of Equation (B.39) is increasing in t within

the stable region. Because the RHS of Equation (B.39) strictly decreases in t, the solution t∗(q) to Equation
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(B.39) is unique for all q ∈ [0,1].

1.2 Otherwise, when µ1 >λ, i.e., ϕ> 1, and µ2 <µ1− (1−E[X])λ, i.e., β < ϕ− (1−E[X]), we show Equation

(B.27) has a unique solution among all t≥ t∗ if the following condition

q <
µ2
2(µ2 −λE[X])

λE[X](µ2(µ2 −λE[X]) +λE[X](µ1 −λ))
:= q̄, (B.41)

is satisfied. Condition (B.41) is equivalent to E[X]/(β−E[X])<β(αβ−E[X])/(E[X](ϕ− 1)).

First, we rewrite Equation (B.27) as

(1− t)f(t)+F (t)

β− (1− t+F (t))− (1− f(t))(ϕ− t)
=

β(αβ−F (t))

(1− t+F (t))(ϕ− t)
, (B.42)

and show Equation (B.42) has a unique solution among all t≥ t∗. We start by analyzing the LHS of Equation

(B.42). The derivative of the LHS of Equation (B.42) equals

(1− t)f ′(t)(β− (1− t+F (t))− (1− f(t))(ϕ− t)))− ((1− t)f(t)+F (t))(2(1− f(t)+ (ϕ− t)f ′(t)))

(β− (1− t+F (t))− (1− f(t))(ϕ− t))2
(B.43)

When ϕ> 1,

(B.43)<(ϕ− t)
β− (1− t+F (t))− (1− f(t))(ϕ− t)− (1− t)f(t)−F (t)

(β− (1− t+F (t))− (1− f(t))(ϕ− t))2
f ′(t) (B.44)

− 2((1− t)f(t)+F (t))(1− f(t))

(β− (1− t+F (t))− (1− f(t))(ϕ− t))2
, (B.45)

where term (B.45) is negative and term (B.44) is negative when

L(t) := β− (1− t+F (t))− (1− f(t))(ϕ− t)− (1− t)f(t)−F (t)< 0.

In addition, we have

L′(t) = 2(1− f(t))+ (ϕ− 1)f ′(t)> 0.

L(t) is increasing in t and at t = 1, it reduces to β − 2E[X]. If β ≤ 2E[X], the derivative of the LHS of

Equation (B.42) is always less than 0, thus it is decreasing in t. Otherwise, because at t = t∗, L(t∗) =
−(1− t∗)f(t∗)−F (t∗)< 0 by Equation (B.7), and there exists t′ that solves L(t) = 0. We have L(t)≤ 0 when

t≤ t′, and L(t)> 0 otherwise. To conclude, if t≤ t′, the LHS of Equation (B.42) is strictly decreasing with

respect to t. However, when t > t′ the LHS of Equation (B.42) might increase in t.

Next, we show that the LHS of Equation (B.42) is below a strictly decreasing function R(t) (note that

the LHS is not always monotonic, yet we still bound it by the function below). To see this,

(1− t)f(t)+F (t)

β− (1− t+F (t))− (1− f(t))(ϕ− t)
≤ 1− t+F (t)

β− (1− t+F (t))− (1− f(t))(ϕ− t)
=

1

−1+ β−(1−f(t))(ϕ−t)

1−t+F (t)

:=R(t),

where the first inequality follows from (1− t)f(t)≤ 1− t. Note R(t) is strictly positive because the LHS is

positive. So its denominator is positive. The denominator is continuous and strictly increasing in t because

(β − (1− f(t))(ϕ− t))′ > 0 and (1− t+ F (t))′ < 0. By the property of the power function with the power

equals -1, the original function is strictly decreasing and convex in t. So, the LHS of Equation (B.42) is

always below a strictly decreasing and convex function. Thus, to prove a unique solution of Equation (B.42),

it is sufficient to prove the following equation has only one solution.

1− t+F (t)

β− (1− t+F (t))− (1− f(t))(ϕ− t)
=

β(αβ−F (t))

(1− t+F (t)))(ϕ− t)
. (B.46)
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The value of the LHS is ∞ at t = t∗ because the denominator is 0 by (B.7), while the value of the RHS

at t = t∗ is finite, so that at t = t∗, we have LHS>RHS. At t = 1, the LHS= E[X]/(β−E[X]), and the

RHS= β(αβ−E[X])/(E[X](ϕ− 1)), thus we have LHS<RHS under the condition

E[X]

β−E[X]
<

β(αβ−E[X])

E[X](ϕ− 1)
.

Therefore, with the condition above, there is at least one solution to (B.46).

The derivative of the RHS of Equation (B.46) equals

−βf(t)(1− t+F (t))(ϕ− t)+β(αβ−F (t))((1− f(t))(ϕ− t)+ 1− t+F (t))

(1− t+F (t))2(ϕ− t)2
, (B.47)

the derivative of the numerator of term (B.47) equals

−βf ′(t)(1− t+F (t))(ϕ− t)+βf(t)(1− f(t))(ϕ− t)

+βf(t)(1− t+F (t))−βf(t)((1− f(t))(ϕ− t)+ 1− t+F (t))−β(αβ−F (t))(2(1− f(t))+ (ϕ− t)f ′(t))

=−βf ′(t)(1− t+F (t))(ϕ− t)−β(αβ−F (t))(2(1− f(t))+ (ϕ− t)f ′(t))< 0.

When t → 0, the numerator converges to αβ2(ϕ + 1) > 0, and when t → 1, the numerator converges to

βE[X](αβ − E[X]− (ϕ− 1)). Thus, if αβ − E[X]≥ ϕ− 1, the numerator of term (B.47) is always positive,

and the RHS of Equation (B.46) is strictly increasing with respect to t. Otherwise, there exists t0 that solves

(B.47)= 0, i.e., t0 is the solution to

f(t)(1− t+F (t))(ϕ− t) = (αβ−F (t))((1− f(t))(ϕ− t)+ 1− t+F (t)).

Because the numerator of term (B.47) is strictly decreasing, it is strictly greater than 0 when t < t0 and it

is strictly less than 0 otherwise. Thus, the RHS of Equation (B.46) is strictly increasing with respect to t

when t < t0, and strictly decreasing with respect to t when t > t0.

When RHS of Equation (B.46) is strictly increasing with respect to t, e.g., when β−E[X]≥ ϕ− 1, there

is only one unique solution to Equation (B.46). Otherwise, we show that when the RHS of Equation (B.46)

is strictly decreasing in t, it is concave. Let x(t) := β(αβ−F (t))> 0, and y(t) := (1− t+F (t))(ϕ− t)> 0. It

is easy to check x′(t)< 0, x′′(t)< 0, y′(t)< 0, and y′′(t)> 0. To simplify the notations, we omit the variable

t. The second derivative of the RHS is(
x

y

)′′

=
(x′′y−xy′′)y2 − (x′y−xy′)2yy′

y4
< 0,

because x′′y− xy′′ < 0 and x′y− xy′ < 0 when the RHS is strictly decreasing. Recall the LHS of Equation

(B.46) is strictly decreasing and convex. To make sure the solution to Equation (B.46) is not obtained where

t > t0, we only need to ensure at t= 1, we have LHS<RHS. That is

E[X]

β−E[X]
<

β(αβ−E[X])

E[X](ϕ− 1)
,

or equivalently

q <
β2(β−E[X])

βE[X](β−E[X]) +E[X]2(ϕ− 1)
=

µ2
2(µ2 −λE[X])

λ(µ2E[X](µ2 −λE[X]) +λE[X]2(µ1 −λ))
= q̄,
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which is the condition stated in case 1(b) in Proposition 7.

Case 2. When t∗ > t̄, we define q̂(t) as

q̂(t) :=
µ2((1− t+F (t))(1− t)f ′(t)− ((1− t)f(t)+F (t))(1− f(t)))

λ(((1− t)f(t)+F (t))2 +(1− t+F (t))(1− t)2f ′(t))
.

The proof follows from Equation (B.37). Recall the LHS of Equation (B.37), i.e., B(t), is strictly increasing

in t. The RHS of Equation (B.37) is the sum of two parts: 1) 1− f(t), which is strictly decreasing in t, and

2) Z(t), which is defined as

Z(t) :=−qλ2(1− t+F (t))((1− t)f(t)+F (t))

µ2(µ2 − qλ(1− t))
.

We show by the Lemma B.10 below, as long as q < q̂(t) for all t < t∗, Z(t) is decreasing with respect to t

within the interval [0, t∗). Thus the RHS of Equation (B.37), which is the sum of two decreasing functions,

is also decreasing in t. Therefore, there is at most one solution to Equation (B.37), i.e., the equilibrium is

unique.

Lemma B.10 If q < q̂(t), Z ′(t)< 0.

The proof of Lemma (B.10) is provided in Section B.10.1. Q.E.D.

B.10.1. Auxiliary Results Used in the Proofs of Proposition 7

Proof of Lemma B.10:

Z ′(t) =−qλ2(−(1− f(t))((1− t)f(t)+F (t))+ (1− t+F (t))(1− t)f ′(t))µ2(µ2 − qλ(1− t))

µ2
2(µ2 − qλ(1− t))2

+
qλ2(1− t+F (t))((1− t)f(t)+F (t))µ2qλ

µ2
2(µ2 − qλ(1− t))2

The numerator of Z ′(t) equals

µ2qλ
2

(
((1−f(t))(µ2−qλ(1−t))+qλ(1−t+F (t)))((1−t)f(t)+F (t))−(1−t+F (t))(1−t)f ′(t)(µ2−qλ(1−t))

)
.

Rearranging the term within the big bracket and collecting q, we get

qλ

(
((1−t)f(t)+F (t))2+(1−t+F (t))(1−t)2f ′(t)

)
−µ2

(
(1−t+F (t))(1−t)f ′(t)−((1−t)f(t)+F (t))(1−f(t))

)
.

Under the condition

q <

µ2

(
(1− t+F (t))(1− t)f ′(t)− ((1− t)f(t)+F (t))(1− f(t))

)
λ

(
((1− t)f(t)+F (t))2 +(1− t+F (t))(1− t)2f ′(t)

) = q̂(t),

we have Z ′(t)< 0. Q.E.D.
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