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We study the Stochastic Economic Lot Scheduling Problem (SELSP) which is concerned with the scheduling

of production of multiple products by a common facility. Our goal is to characterize an optimal lot-sizing

policy, with possible idle times inserted between productions, so as to minimize a long-run average holding,

backlog, and setup cost. Due to its complexity, the optimal-control problem of SELSP is unsolved, with

existing results mostly focusing on restricted classes of policies. In this paper, we take an asymptotic approach

and prove that the classical base-stock policy with idle times is asymptotically optimal among a large class

of admissible controls as the setup times grow large. Extensive numerical studies and computations of the

optimal control in sufficiently simple cases (that can be solved using Markov decision processes) demonstrate

the effectiveness and the robustness of the asymptotically optimal policy.
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1. Introduction

The Stochastic Economic Lot Scheduling Problem (SELSP) considers the production of multiple

products on a single machine with random demands, random production times, and random setup

times. In this problem, the system manager aims to find a “good” production plan that specifies

for each state of the system whether to continue the production of the current product, to switch

to another product, or to idle the facility. The goal is to optimally balance inventory holding,

order backlogging, and production setup costs. The SELSP has been widely applied to model

and optimize large-scale manufacturing systems (see, for example, Gascon et al. (1994), Sox and

Muckstadt (1997), Grasman et al. (2008)). The key features it captures are the setup time and cost

incurred when switching from producing one type of products to another, the uncertainty in demand

and production, and the heterogeneity of different products (including demands, production times,

holding and backlog costs, etc).

From a theoretical perspective, the SELSP has long been identified as a challenging problem. A

production plan for a multi-product manufacturing facility needs to specify two critical components:
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a production sequence and a lot sizing policy. The production sequence specifies which product the

facility turns to once it stops producing the current product, and can be either fixed or dynamic.

The lot sizing policy decides how long the facility produces the current product, possibly with idle

times inserted between the completion of the current production batch and the setup for the next

product. Jointly optimizing the production sequence and the lot sizing policy seems out of reach:

Hsu (1983) shows that, even a restricted version of the deterministic Economic Lot Scheduling

Problem (ELSP) is NP-hard. Thus, most of the existing works fix the production sequence and

study the lot sizing policy (see, for example, Federgruen and Katalan (1996a,b), Krieg and Kuhn

(2004)), which is the focus of our paper as well.

An important class of lot sizing policies is the base-stock policies, under which the facility

continues producing a product until its inventory level reaches a pre-specified base-stock level,

with idle times inserted between the completion of the current production batch and the setup for

the next product. It is argued in Federgruen and Katalan (1996b) that the base-stock policy is

effective because (i) it is easy to implement and monitor, and (ii) it can be seen as a variant of

the common cycle policy for deterministic ELSPs and the (s,S)-rule (i.e., periodic review order-

up-to policy) for inventory replenishment systems, both of which are shown to be effective in

coordinating replenishments across products. Although the simple and natural base-stock policy

has been prevalently studied and applied, its merits have only been advocated qualitatively; in

particular, there exists no optimality result for this policy; see, e.g., the survey in Winands et al.

(2011). This fact is not surprising given the complexity of SELSP, which renders this problem

intractable.

Thus, in this paper we take the prevalent approach in the queueing-network literature, and prove

that the base-stock policy is asymptotically optimal among a large class of policies. Our asymptotic

results are established under a large setup-times regime, and are therefore appropriate when the

production times of an individual product are small relative to the setup times, as is often the

case in practice. It is significant that, even if one restricts oneself to the base-stock policy, deriving

the optimal control parameters can be computationally intensive, especially when optimization

over the idle times is involved; see (Federgruen and Katalan 1996b). However, the asymptotically

optimal control parameters can be derived relatively easily by solving a simple deterministic opti-

mization problem which, for some important special cases, can be computed explicitly. Finally,

we demonstrate through extensive numerical experiments that the policies derived based on our

asymptotic analysis are effective.
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Our analysis provides both theoretical insights and prescriptive solutions to the management of

multi-product inventory systems with large setup times. Our main contributions can be summarized

as follows. We leverage a novel theoretical framework developed in Hu et al. (2020a) to establish the

asymptotic optimality of the base-stock policy with idle times in a large setup-times fluid regime.

In particular, we first consider a deterministic relaxation for the stochastic network (namely, a

fluid model), that is represented as a hybrid dynamical system (HDS). Employing HDS theory,

we prove that the common cycle approach for the deterministic ESLP (Hanssmann 1962, Maxwell

1964), which optimizes the control over a single production cycle, is equivalent to optimizing the

control over an arbitrary number of production cycles. Further, we prove that, for any initial

condition, the fluid model converges to the optimal trajectory under our proposed optimal fluid

control. Finally, we “translate” the optimal fluid control to a base-stock policy with idle times for

the corresponding stochastic system, and prove that this policy is asymptotically optimal, in a

large-setup-time asymptotic regime, among a large class of admissible controls. We mention that,

to the best of our knowledge, all of the policies studied in the literature belong to our family of

admissible controls; examples include various variations of base-stock policies and fixed-quantity

policies.

1.1. Related Literature

In this section, we provide a brief review of the literature that is most related to our work. We

refer to the survey papers Elmaghraby (1978), Allahverdi et al. (1999) for comprehensive reviews

regarding ELSP, and to Sox et al. (1999), Winands et al. (2011) for reviews on SELSPs.

Deterministic Systems. The ELSPs are deterministic versions of the SELSPs, in which the pro-

duction and arrival streams, and the setup times are continuous deterministic functions. The objec-

tive is to find a production schedule that minimizes the long-run average holding, backlog, and

setup costs. Even in this deterministic setting, jointly optimizing the production sequence and the

lot sizing is prohibitive. To the best of our knowledge, the optimal solution has only been obtained

in a special case considered in Jones and Inman (1989). Since the general form of the problem is

too hard to solve, most existing works take the approach of finding the optimum of a restricted

version of the original problem. One of the most noteworthy confinement schemes is the common

cycle (or rotation cycle) approach (Hanssmann 1962, Maxwell 1964). This method optimizes over

periodic production schedules in which each item is produced exactly once in a production cycle.

The varying lot size approach (Gallego and Roundy 1988, Gallego 1990, 1994, Zipkin 1991, Dobson

1992) generalizes the common cycle approach by allowing some products to be produced more than
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once in a cycle. Other works combine the optimization of the lot-sizing policy with dynamic pro-

gramming formulations (Bomberger 1966, Elmaghraby 1978, Adelman and Barz 2014a,b). Linear

costs are assumed in all the aforementioned works, and backlog is permitted only in Gallego and

Roundy (1988), Gallego (1990, 1994).

Our work optimizes the lot sizing policy by first optimizing the system-level process over one

production cycle using the common cycle approach, and then showing that the base-stock policy,

with properly chosen parameters, can achieve that optimal one-cycle behavior in the long run.

Our work contributes to the ELSP literature in three aspects: First, we consider general (non-

negative, non-decreasing, and continuous) cost functions that grow at most at a polynomial rate

(see Assumption 2); second, we prove that it is sufficient to optimize over one (instead of multiple)

production cycle; third, our work draws rigorous connection between the ELSP and SELSP via

fluid limits in a large setup-times asymptotic regime.

The SELSP with setup times. Most of the papers concerning the SELSP with setup costs or

times deal with heuristics. Some well-known ones include Gallego (1990), which derives a target

cyclic production schedule based on the deterministic ELSP with an added safety stock to hedge

against demand uncertainty. Bourland and Yano (1994) assume a reorder point for each individual

product; once the next product hits its reorder point, the facility immediately moves on to the

next product, and the rest of the production quantity for the current product is made on overtime.

Gascon et al. (1994) compare six different heuristics with the objective of minimizing the sum of

setup and inventory costs. It is significant that all these heuristics optimize over a specific class of

policies.

More recently, systems with large setup times have attracted great attention due to their practi-

cal relevance. Focusing on systems without inventories, Van der Mei (1999), Olsen (2001), Winands

(2007, 2011) characterize the limiting system performance (i.e., steady-state waiting time of back-

logged orders) in the large-setup-time limit under a particular control. Our work also considers

the large-setup-time scaling, but we focus on proving asymptotic optimality of our control under

a general class of admissible controls, as opposed to approximating performance measures under a

specific policy. Lastly, similar large-time scaling has been considered for inventory control problems

other than the SELSP. For example, Xin and Goldberg (2018) prove that a tailored base-surge

policy is asymptotically optimal in dual-sourcing inventory systems, when the lead time difference

between the regular and express suppliers grows to infinity.
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Queueing-based approaches to the SELSP. There is a strong connection between the SELSP and

the optimal control problem for polling systems (i.e., stochastic queueing networks where several

queues are served by a single server). The switchover times in polling systems can be considered as

the setup times in the SELSP, and the queue length can be equated to the backlog level. Though

the SELSP is often considered more challenging than the control problem of polling systems due

to the inclusion of inventory, possible idling behavior, and more complicated cost structure (i.e.,

the inventory level can be both positive or negative with different cost rates for the positive and

negative parts), results for polling systems can shed light to SELSPs in certain settings.

Federgruen and Katalan (1996b) apply analysis of the queue length process under the exhaustive

policy in Federgruen and Katalan (1994) to characterize the inventory level process under the

base-stock policy. In addition, leveraging insights from the heavy-traffic approximation of polling

systems in Coffman Jr et al. (1995, 1998), Markowitz et al. (2000) study two versions of the SELSP

with linear cost rates, one with setup costs and the other with setup times, and solve a diffusion

control problem for the two-product SELSPs. While the problem can be explicitly solved for the

case with positive setup cost, only heuristics are obtained for the case with positive setup times.

Markowitz and Wein (2001) further generalize the heavy-traffic approximation to other related

inventory problems. Our work here also leverages results developed for polling systems, and in

particular, the mathematical framework developed in our recent paper Hu et al. (2020a), although

the setting and the control we consider here differ from those in this latter reference.

1.2. Notation

All the random variables and processes are defined on a single probability space (Ω,F ,P). We

denote E as the expectation operator. We let R, Z and N denote the sets of real numbers, integers

and strictly positive integers, respectively, Z+ := N∪{0}, and R+ := [0,∞). For K ∈N, we let RK

denote the space of K-dimensional vectors with real components, and denote these vectors with

bold letters and numbers. We let DK denote the space of right-continuous RK-valued functions

(on arbitrary finite time intervals) with limits everywhere, endowed with the usual Skorokhod J1

topology; see Chapter 11 of Whitt (2002). Let D :=D1. We use CK (and C :=C1) to denote the

subspace of DK of continuous functions. It is well-known that the J1 topology relativized to CK

coincides with the uniform topology on CK , which is induced by the norm ||x||t := sup0≤u≤t ‖x(u)‖,

where ||x|| denotes the usual Euclidean norm of x∈RK .

1.3. Organization

The rest of the paper is organized as follows. In Section 2 we introduce the model, state the problem

formulation, and preview the main results. In Section 3 we studies a deterministic relaxation (a
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fluid model) to the SELSP, which is characterized as a hybrid dynamical system (HDS). This

deterministic relaxation gives rise to a fluid control problem (FCP). We show that the base-stock

policy is optimal for the FCP. In Section 4 we translate the fluid-optimal base-stock policy for

the stochastic system, and prove that it is asymptotically optimal as the setup times increase

without bound. Sections 5 and 6 are devoted to numerical experiments. In Section 5, we validate

the effectiveness of the fluid-translated policy for the stochastic system. In Section 6, we compare

the performance of the proposed base-stock policy to that of the “exact” optimal policy derived

based on the corresponding Markov decision process (MDP). We conclude in Section 7. All the

proofs appear in the appendix.

2. Model Description, Problem Statement, and Main Results

We consider a make-to-stock inventory system with K products numbered 1, ...,K. Let K :=

{1, ...,K}. Demands for product k ∈ K arrive to the system according to a Poisson process with

rate λk > 0, independently of everything else. When a demand arrives, it is immediately satisfied

by one unit1 if an inventory of the specific product exists. Otherwise, the demand is backlogged

in an infinite buffer. Production times for individual units are independent; those of product k are

identically distributed and denoted by a generic random variable Gk with mean 1/µk <∞. The

utilization rate for product k is ρk := λk/µk, and for the system is ρ :=
∑

k∈K ρk. We assume ρ< 1,

which is the necessary condition for the system to be stable (Fricker and Jaibi 1994) in the sense

that there exists a control under which the system has a steady state. (However, ρ < 1 does not

guarantee that the system is stable; this depends also on the control that is exercised.)

A single facility rotates between the products in a fixed order of (1, ...,K), switching back to

product 1 once it is done producing product K. (The products are numbered in the order at which

they are produced.) When switching from the production of product k − 1 to the production of

product k, a setup time is incurred. We let Sk denote a generic random variable representing the

setup time incurred when switching from product k−1 to k, and let sk <∞ denote its mean, where

we define 1− 1 :=K and K + 1 := 1. We denote the total expected setup time during a cycle by

s :=
∑

k∈K sk, and assume that s > 0.

After setting up for product k, the facility produces this product according to a lot sizing policy.

The lot sizing policy determines how many units should be produced in the current production run,

and is one of the two control levers in our study. Once the production of product k is terminated, a

1 Throughout the paper, we refer to each product type as “product,” and an individual unit of a product type as
“unit.”
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deterministic, fixed idle time Wk ∈R+ is inserted before the facility sets up for producing product

k+ 1. Let W := (Wk, k ∈K). Whether and for how long to idle is the other part of the control. As

we shall see below, the insertion of idle times may be beneficial, because it reduces the frequency

of switchings in the long run, and thus reduces long-run average setup costs. Figure 1 illustrates

the model configuration for a three-product facility.

Figure 1 A three-product facility

λ1 λ2 λ3

µ1 µ2 µ3
product 1

product2pr
od
uc
t3

We refer to the start of the production of product k (after the setup time) as the polling epoch

of product k, and the termination of production of this product as the departure epoch (before

the potential idling time). A production cycle is the time elapsed between two consecutive polling

epochs of product 1.

Without loss of generality, we assume that the facility is at the polling epoch of product 1 at time

0. For m≥ 1, we denote the length of the mth production cycle by T (m), so that U (m) :=
∑m

i=1 T
(i)

(with U (0) := 0) is the beginning of the (m + 1)st cycle. Let A
(m)
k and D

(m)
k , k ∈ K, denote the

polling and departure epochs of product k during the mth cycle. Then, V
(m)
k :=D

(m)
k −A(m)

k is the

busy time of product k, namely, the length of the production run of product k in the mth cycle.

We do not rule out the possibility of having instantaneous busy times, so that it is possible to have

V
(m)
k = 0 for some k ∈K and m≥ 1, in which case the polling epoch is equal to the departure epoch

of product k in this cycle.

We let Xk(t) denote the inventory level of product k at time t≥ 0, and X(t) := (Xk(t), k ∈K).

Then max(0,Xk(t)) is the available inventory, and max(−Xk(t),0) is the number of backlogged

orders of product k at time t. We use Z(t) to denote the location of the facility at time t, i.e.,

whether the facility is producing, idling, or setting up at time t. More specifically, Z(t) = kS means
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that the facility is setting up for product k, Z(t) = k means that the facility is actively producing

product k, and Z(t) = kI means that the facility is idling after terminating the production of

product k at time t. Then Z(t)∈Z := {kS, k, kI : k ∈K}.

2.1. Admissible Policies

The control of the system is a specification of the lot sizing and idling behavior. To define the family

of admissible controls, which we denote by Π, let Ft := {Ft : t≥ 0} be the σ-algebra generated by

X. A control is said to be non-anticipative if its decisions are made based on Ft (and not on any

future information). It is said to be (discrete) Markovian if, conditional on the inventory level at

the polling epoch of a product, the number of units to produce is independent of the history up

to that instant. In particular, given X(A
(m)
k ), k ∈K, m≥ 1, the lot size for product k in the mth

cycle is conditionally independent of F
A

(m)
k

.

Definition 1 (admissible control) Each element π ∈Π specifies a lot sizing policy and an idle

time vector W ∈ RK+ . The idle time vector is deterministic and remains fixed over time (i.e.,

independent of the evolution of the inventory level). In contrast, the lot sizing policy can be state

dependent, and satisfies the following conditions:

(i) The policy is non-anticipative.

(ii) The policy is (discrete) Markovian.

Recall that for m≥ 0, U (m) is the beginning of the (m+ 1)st production cycle, namely, the polling

epoch of product 1 in the m-th cycle. Let

X̃(m) :=X(U (m)), for m≥ 0.

The following Lemma follows from Proposition 1 in Fricker and Jaibi (1994).

Lemma 1 Under any admissible policy π ∈Π, the process {X̃(m) :m≥ 0} is an aperiodic time-

homogeneous DTMC.

For the SELSP (formally defined below in (2.1)), we can restrict attention to admissible controls

that are stable, as defined below.

Definition 2 An admissible lot sizing policy π ∈ Π is stable if the DTMC X̃ is absorbed in a

positive recurrent class.
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The family of admissible controls Π is large, and includes (to the best of our knowledge) all

of the policies that were considered in the literature; here we bring four examples. Consider K-

dimensional vectors B = (B1, ...,BK) and M = (M1, ...,MK), where Bk is the base-stock level, and

Mk is the production quantity of product k.

Base-stock policies: when the facility polls product k ∈ K, it continues producing the product

until the target inventory level Bk is reached. Product k is skipped if the inventory level at its

polling epoch is smaller than the target level.

Gated base-stock policies: when the facility turns to product k ∈K, it produces a batch of size that

is equal to the difference between the base-stock level and the inventory level at the polling epoch.

The product is skipped if its inventory level at the polling epoch is smaller than the base-stock

level.

Fixed-quantity policies: At each visit of product k, the facility produces a batch of size of Mk.

Quantity-limited base-stock policies: At each polling of product k ∈ K, the facility continues

producing the product until either the target inventory level Bk is reached, or a number of Mk of

units has been produced, whichever occurs first. The product is skipped if its starting inventory

level is no less than the target base-stock level.

2.2. The Cost Structure

The optimal-control problem we consider aims to minimize the long-run average total cost incurred

by the system by exercising an admissible control. To describe the objective function, let

hk :R+→R+ denote the inventory holding-cost function for product k per unit time;

pk :R+→R+ denote the backlog cost function for product k per unit time;

rk ∈R+ denote the fixed setup cost incurred per setup for product k.

For k ∈ K and t≥ 0, and for Γk(t) denoting the number of setups for product k by time t, the

objective function we consider is the following long-run average cost

Cπ := lim
t→∞

1

t

∑
k∈K

(
rkΓπ,k(t) +

∫ t

0

(
hk
(
Xπ,k(s)

+
)

+ pk
(
Xπ,k(s)

−))ds) , (2.1)

where we use the subscript π to mark the dependence of the system dynamics on the control. Note

that for the class of stable controls (Definition 2), the inventory level process is a regenerative

process, and thus the limit in (2.1) exists w.p.1. In what follows, we shall drop the subscript π if

there is no ambiguity regarding which control is considered.

In addition, we define functions ψk :R→R+ and ψ :RK→R+, where for x∈RK ,

ψk(xk) := hk
(
x+
k

)
+ pk

(
x−k
)
, and ψ(x) :=

∑
k∈K

ψk(xk), k ∈K.
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2.3. Large-Setup-Time Asymptotic

Since we require an admissible control to be discrete-Markov (Definition 1), we could in principle

employ discrete-time Markov decision processes (MDP) embedded at the polling epochs to optimize

the control. However, due to the complex dynamics, the transition probabilities and costs for

the MDPs are prohibitively hard to characterize, so that, even a two-product system is hard to

analyze—a problem that is exacerbated in large networks. See Section 6. Thus, instead of optimizing

the control for the system, we search for an asymptotically optimal control, namely, a control

that achieves the best possible asymptotic outcome. To this end, we consider a fluid-limit regime

obtained by letting the setup times grow without bound; this limiting approximation is efficient for

systems in which the setup times are substantially larger than the per-product production times.

For out asymptotic analysis, we consider a sequence of facilities indexed by n≥ 1, and mark the

primitives and processes that scale with n with a superscript. We assume that the demand rate

and production rate for product k ∈K do not scale with n. Thus, we keep the notations λk and µk

for the nth system. We let the setup times grow without bound, and assume that the setup time

for product k in the nth system, Snk , satisfies

S̄nk := Snk /n⇒ sk as n→∞, k ∈K,

where we use “⇒” to denote convergence in distribution. Furthermore, the mean setup time satisfies

E
[
S̄nk
]

= sk, k ∈K, n≥ 1.

For n≥ 1, let the fluid-scaled inventory and the setup counting processes be defined as follows:

X̄n(t) := (Xn
k (nt)/n, k ∈K) , and Γ̄n(t) := Γn(nt) t≥ 0.

Note that because the setup times are Θp(n) in the nth system, there are Θp(1) number of setups

in O(n) amount of time.1 We refer to the above scaling as the large-setup-time scaling (also referred

to as the fluid scaling).

Then under the fluid scaling, the objective function for the nth system is given by

C̄n
πn := lim

t→∞

1

t

(∑
k∈K

rkΓ̄
n
πn,k(t) +

∫ t

0

ψ
(
X̄n
πn(s)

)
ds

)
, (2.2)

where πn is the control employed in system n, assumed to be admissible (and stable).

We next define the notion of asymptotic optimality.

1 Given a sequence of random variables {Xn : n≥ 1} and a sequence of non-negative real numbers {an : n≥ 1}, we
write Xn = Θp(a

n) if ||Xn||/an is stochastically bounded, i.e., for any ε > 0, there exist finite M,N ∈ N such that
P (||Xn||/an >M)< ε for all n≥N .
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Definition 3 A sequence of admissible policies {π̃n∗ : n≥ 1} is said to be asymptotically optimal if,

for any other sequence of admissible policies {πn : n≥ 1}, it holds that

limsup
n→∞

C̄n
π̃n∗
≤ lim inf

n→∞
C̄n
πn w.p.1.

2.4. Main Results

Since we consider general cost functions, we impose the following assumptions on the production

and setup time distributions. Recall that Gk and Sk denote the production time and setup time

corresponding to product k, respectively.

Assumption 1 For all k ∈K,

(i) E [etGk ] for all t∈ (−ε, ε), for some ε > 0.

(ii) E
[
etS

n
k
]
<∞ for all t∈R+ and n≥ 1. In addition, E

[
(S̄nk )`

]
→ s`k as n→∞ for any `≥ 1.

Assumption 1 requires that the production times and setup times have light-tailed distributions;

such distributions include the uniform, Erlang (including exponential), and Weibull distribution

with shape parameter larger than or equal to 1. Moreover, note that under the large-setup-time

scaling, we have S̄nk ⇒ sk as n→∞ for all k ∈K. Then the convergence of means in Assumption 1

is equivalent, or implies uniform integrability condition for the setup times.

For n ≥ 1, we use πnBSI to denote the control that employs the base-stock policy with base-

stock level Bn and idle time vector Wn, for some vectors Bn ∈RK and Wn ∈RK+ . (The subscript

“BSI” is mnemonic for base-stock idling, in order to differentiate it from base-stock policies without

idling.) We determine the parameters of the BSI policy by considering the following deterministic

optimization problem:

min
w∈R+, b∈RK , xe∈CK

1

τ

(∑
k∈K

rk +

∫ τ

0

ψ (xe(s))ds

)
s.t. xe,k(0) = bk− (µk−λk)ρkτ, k ∈K

·
xe,k (t) = µk−λk for t∈ (0, ρkτ), k ∈K
·
xe,k (t) =−λk for t∈ (ρkτ, τ), k ∈K

τ = (s+w)/(1− ρ).

(2.3)

In particular, (2.3) can be understood as a restricted version of the ELSP, which optimizes the

state trajectory over one production cycle (where the inventory levels at the beginning and end

are held equal) for the deterministic inventory system under the BSI policy with base-stock levels



12

b and total idle time w in each cycle. The existence of an optimal solution to problem (2.3) is

established under Assumption 2 below. Let h̄k :R+→R+ and p̄k :R+→R+ be defined via

h̄k(y) :=
1

y

∫ y

0

hk(ak(t))dt, and p̄k(y) :=
1

y

∫ y

0

pk(ak(t))dt,

where

ak(t) :=

{
(µk−λk)t, if 0≤ t≤ yρk
(µk−λk)yρk−λk(t− yρk) if yρk < t≤ y

Assumption 2 For each k ∈K, the cost functions hk and pk are non-decreasing and continuous.

In addition, the functions h̄k and p̄k satisfy h̄k(y)→∞ and p̄k(y)→∞ as y→∞. Furthermore,

hk(x) =O(xp) and pk(x) =O(xp), for some p∈N.2

We mention that the third condition in the assumption, regarding the (sub)-polynomial growth

rate of hk and pk, is not needed for problem (2.3), but is required in order to establish a certain

uniform integrability result for the stochastic inventory system (see the proof of Lemma 5). We

further remark that Assumption 2 is not restrictive in practice, and allows for a wide range of

cost functions. Examples for hk(x) and pk(x) include αx, xp, log(x), etc., for α ∈ R+ and p ∈ N.

Unlike Assumption 1 which can be relaxed in special settings (see, e.g., Lemma 6), Assumption

2 is assumed to hold throughout the paper and is thus omitted from the statements of the main

results.

Let (b∗,w∗) denote the optimal solution to (2.3), and let w∗ := (w∗,k, k ∈K) be a vector in RK+
such that

∑
k∈Kw∗,k =w∗. We construct a sequence of BSI policies denoted by {πnBSI,∗ : n≥ 1} with

the following parameters:

(i) The base-stock level for product k in the nth system is Bn
∗,k := dnb∗,ke= min{z ∈Z : z ≥ nb∗,k},

and Bn
∗ := (Bn

∗,k, k ∈K).

(ii) The idle time following the production of product k in the nth system is W n
∗,k := nw∗,k, and

Wn
∗ := (W n

∗,k, k ∈K).

Our main result establishes that the sequence of BSI policies {πnBSI,∗ : n ≥ 1} with parameters

{Bn
∗ : n≥ 1} and {Wn

∗ : n≥ 1} is asymptotically optimal.

Theorem 1 Under Assumption 1 and the large-setup-time scaling, it holds that

limsup
n→∞

C̄n
πn
BSI,∗

≤ lim inf
n→∞

C̄n
πn w.p.1, (2.4)

for any other sequence of admissible controls {πn : n≥ 1}
2 For f : Rk→ [0,∞), g : Rk→ [0,∞), and a∈Rk+ ∪{∞}, we write f(x) =O(g(x)) as x→ a if limsupx→a f(x)/g(x)<
∞, and f(x) = o(g(x)) if limx→a f(x)/g(x) = 0, k ∈N.
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3. The Economic Lot Scheduling Problem

In this section, we study the ELSP corresponding to our SELSP. We provide a novel HDS represen-

tation for the system’s dynamics, and generalize the existing common cycle approach (Hanssmann

1962) by optimizing over multi-cycle PE. In the ELSP, the demand, production and setup occur

continuously and deterministically at the same rates as those in the stochastic system. We thus

refer to the ELSP model as the “fluid model” of the original (stochastic) system.

To describe the ELSP, let for each product k ∈K, λk be the demand rate, µk be the production

rate, sk and rk be the deterministic setup time and setup cost prior to the production of product

k, and hk and pk be the holding cost function and backlog cost function, respectively. We use

lower-case letters to denote the fluid counterparts of the corresponding stochastic processes. In

particular, x(t) denotes the inventory level, z(t) is the facility location at time t, and a(t) denotes

the most recent polling epoch prior to time t. In addition, we let a
(m)
k , d

(m)
k and v

(m)
k denote the

polling epoch, the departure epoch, and the busy time (the length of the production run) of product

k during the mth production cycle, k ∈ K, m ≥ 1. We use τ (m) to denote the length of the mth

cycle, and u(m−1) to denote the beginning of the mth cycle.

For the fluid model in (C.4) to be well-defined, we must specify, for each cycle m, the idle times

(w
(m)
k , k ∈K) and the production lengths (v

(m)
k , k ∈K), from which the values of (a

(m)
k , d

(m)
k , k ∈K)

can be inferred. In turn, the values of (w
(m)
k , k ∈K) and (v

(m)
k , k ∈K) are determined by the idling

and lot sizing policy.

To introduce the HDS representation of the fluid model, we note that its dynamics depend on

the state of x(t) the position of the facility z(t), and potentially (depending on the lot sizing policy)

the inventory level at the most recent polling epoch x(a(t)). Thus, we consider the process

x̂(t) := (x(t), x(a(t)), z(t)) t≥ 0.

Since the dynamics of x̂(t) are determined simultaneously by those of the continuous process

x(t), and the discontinuous process z(t), having values in a finite state space, x̂ is an HDS on

RK ×RK ×Z. Its state equations have the form

·
x (t) = f(z(t))

z(t) = g(x(t), x(a(t−)), z(t−)),

a(t) = h(x(t), x(a(t−)), z(t−)),

(3.1)

for functions f :Z →RK , g :RK ×RK ×Z →Z, and h :RK ×RK ×Z →R+ described below.
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First, the function f specifies the law of motion of x(t) as a function of the location of the facility:

fk(z(t)) =

{
−λk +µk if z(t) = k

−λk otherwise
, k ∈K.

The functions g and h are determined by the control that is exercised, and can be described via

K lot sizing functions φk :RK→R+, and K idling functions ηk :RK→R+, such that

v
(m)
k = φk(x(a

(m)
k )), w

(m)
k = ηk(x(a

(m)
k )), k ∈K, m≥ 1. (3.2)

The functions (φk, ηk, k ∈K) then jointly define the functions g for the server location, and h for the

most recent polling epoch. Since the exact forms of g and h are algebraically lengthy, we relegate

their characterization to Appendix A.

We will henceforth refer to equations of the form (3.1) as HDS and to x̂ as a solution to the

HDS. We will sometimes also refer to the inventory level x alone as a “solution” to the HDS of a

“fluid model,” when a control is specified.

3.1. Optimizing the Control of the ESLP

Since we optimize the long-run average cost, we need to study the long-run behavior of the fluid

model; we thus begin by defining some fundamental terms.

Definition 4 (periodic equilibrium) A solution x̂e to the HDS (3.1) is a periodic equilibrium

(PE) for the HDS if there exists τ > 0 such that x̂e(t+ τ) = x̂e(t) for all t≥ 0. The smallest such

τ is called the period.

Note that a PE may contain more than one cycle of the facility. We refer to a PE whose period

contains L cycles as an L-cycle PE.

For a given control, we would like to know whether the system eventually converges to a (desir-

able) PE. Since a PE is itself a full trajectory, convergence of any other trajectory to the PE will

hold if it is possible to “align” the two trajectories in such a way that the two become uniformly

close to each other as time increases.

Definition 5 (convergence to a PE) A solution x̂ to the HDS (3.1) is said to converge to a

PE x̂e if there exists L∈N, such that ||x(u(mL) + ·)−xe(·)||t→ 0 as m→∞, for all t > 0.

Finally, a desirable property of a PE is for it to be a global limit cycle, namely, a PE to which

all the solutions to the HDS converge. Clearly, if a global limit cycle exists, then it must also be

the unique PE.
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3.2. The Fluid Control Problem

We assume that each control u of the ESLP satisfies the following two conditions:

(i) There exists a unique solution xφu := {xφu(t) : t≥ 0} to the HDS (3.1) for any initial condition

φ∈RK .

(ii) Any solution xφu converges to a PE as t→∞.

We denote the set of all such controls by U . Note that a solution xφu to the HDS need not converge

to a one-cycle PE. In other words, we allow xφu to converge to an L-cycle PE for some L ∈ N.

Nevertheless, we show below that if is sufficient to restrict attention to a subclass of U of controls

that guarantee that a one-cycle global limit cycle exists.

Let γφu,k(t) denote the total number of setups for product k by time t when the initial condition

is φ and control u is applied. For φ∈RK , let

Cu(φ) := lim
t→∞

1

t

(∑
k∈K

rkγ
φ
u,k(t) +

∫ t

0

ψ
(
xφu(s)

)
ds

)
.

The aim of the FCP is to identify a fluid-optimal control u∗ ∈ U that satisfies

Cu∗(φ)≤Cu(φ) for all φ∈RK , u∈ U .

We next show that optimizing the long-run average cost can be reduced to optimizing over all

PE. Let xφu denote the unique solution to the HDS when control u ∈ U is employed and when the

initial condition is φ. Let xφe denote the PE to which xφu converges, and let τφe denote its period

which contains Lφe production cycles, for some Lφe ∈N.

Lemma 2 We have

Cu(φ) =
1

τφe

(∑
k∈K

rkL
φ
e +

∫ τ
φ
e

0

ψ
(
xφe (s)

)
ds

)
.

Let c := infu∈U infφ∈RK Cu(φ). Due to Lemma 2, we solve the FCP by searching for a control

u∗ ∈ U under which there exists a global limit cycle x∗ (with period τ∗ containing L∗ production

cycles) whose long-run average cost is c, namely,

c=
1

τ∗

(∑
k∈K

rkL∗+

∫ τ∗

0

ψ (x∗(s))ds

)
. (3.3)

By Lemma 2 and Lemma 3 below, (3.3) holds if and only if

1

τ∗

(∑
k∈K

rkL∗+

∫ τ∗

0

ψ (x∗(s))ds

)
≤ 1

τe

(∑
k∈K

rkLe +

∫ τe

0

ψ (xe(s))ds

)
,

for any other PE xe (under some control for some initial condition), whose period is τe and contains

Le production cycles.
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3.3. The Optimal Base-Stock Idling Policy for the Fluid Model

To solve the FCP, we start by identifying closed curves in RK that are possible solutions of the

HDS, namely, they can be obtained under some control for some initial condition. We refer to

such a closed curve xe as a PE-candidate and treat it as a mapping from [0, τe] to RK , satisfying

xe(τe) = xe(0). We then optimize over all possible PE-candidates in order to find the optimal PE-

candidate x∗ with the lowest time-average cost. Finally, we design an optimal control u∗ ∈ U under

which the optimal PE-candidate is a global limit cycle for the HDS.

3.3.1. Computing an Optimal PE-Candidate Formally, an optimal PE-candidate solves

the fluid optimization problem

min
L∈N, τL∈R+, xe∈CK

1

τL

(∑
k∈K

rkL+

∫ τL

0

ψ (xe(s))ds

)
s.t. xe is an L-cycle PE-candidate with period τL.

(3.4)

We note that the fluid optimization problem 3.4 is equivalent to the common cycle approach for

the ELSP (Hanssmann 1962, Maxwell 1964, Elmaghraby 1978) if (i) backlog is not permitted, (ii)

the holding cost function hk is linear for all k ∈ K, and (iii) L is prespecified at the value of 1 as

opposed to being a control variable to optimize. While one may expect that an optimal solution

to (3.4) outperforms the optimal one-cycle PE-candidate, we shall see below that setting L to 1 is

indeed optimal for (3.4).

Solving problem (3.4) is prohibitive, as it requires solving for all L≥ 1. However, the following

proposition shows that one can focus on the case L= 1.

Proposition 1 There exists an optimal solution to (3.4) with L= 1.

In light of Proposition 1, an optimal solution to the following problem also solves (3.4).

min
τ∈R+, xe∈CK

1

τ

(∑
k∈K

rk +

∫ τ

0

ψ (xe(s))ds

)
s.t. xe is a one-cycle PE-candidate with period τ.

(3.5)

We can parametrize any one-cycle PE-candidate xe with period τ , by letting bk denote the

produce-up-to level of product k in its production run, namely,

bk := max{xe,k(t) : 0≤ t≤ τ} , k ∈K.

For a given idle-time vector w, let w :=
∑

k∈Kwk. It follows from basic flow balance equations that

the period τ satisfies

τ = (s+w)/(1− ρ). (3.6)
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To see this, note that, since the inventory level at the beginning and the end of a period is identical,

each demand arriving during this time interval gets produced eventually. Hence, the facility must

be producing a fraction ρ of the time, and setting up or idling for a fraction (1−ρ) of the time. Since

the total setup plus idle time over the production cycles is (s+w), it holds that τ(1−ρ) = (s+w),

which gives (3.6). as illustrated in Figure 2. Next, it can be easily observed (see, e.g., Figure 2)

that the inventory level xe,k of product k is fully determined by τ and bk, and thus by w and

bk due to (3.6). In addition, the one-cycle fluid optimization problem (3.5) depends on w only

through the sum of its elements, w. Let b := (bk, k ∈K). Problem (3.5) can be equivalently written

as optimizing over w and b, which gives rise to the fluid optimization problem (2.3), which is the

deterministic optimization problem that we introduce in Section 2.4 (preview of main results) to

solve for the parameters of the asymptotically optimal BSI policy.

Figure 2 Inventory level of product k in a one-cycle PE-candidate
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For a given cost function, problem (2.3) can be solved analytically or numerically with little

effort. We next provide two examples where the optimal solution to (2.3) can be characterized in

closed form.

Example 1 (linear holding and backlog costs, no setup cost) If rk = 0 for all k ∈K, and if

pk and hk are linear, i.e., hk(x) = hkx and pk(x) = pkx for some constants hk ∈R+ and pk ∈R+, then

the optimal solution to the fluid optimization problem (2.3) has w∗ = 0, and so the period is τ∗ =

s/(1−ρ). Furthermore, the optimal inventory level of product k increases from − hk
pk+hk

(1−ρk)λkτ∗
to pk

pk+hk
(1− ρk)λkτ∗ each time product k ∈K is polled.

The next example shows that in the presence of setup costs, it may be beneficial to idle the

facility in order to decrease the frequency of switching and reduce the long-run average setup cost.
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Example 2 (symmetric two-product system) Consider a two-product symmetric system

with λ := λ1 = λ2, µ := µ1 = µ2, s := s1 = s2, r := r1 = r2, and linear cost functions with rates

c := h1 = h2 = p1 = p2. Let

Tsym :=
cs2λµ(µ−λ)

4(−2λ+µ)2
.

Then the optimal solution to the fluid optimization problem (2.3) is as follows.

(i) If r > Tsym, then

w∗ =
csλ(µ−λ) + 2(2λ−µ)

√
crλ(µ−λ)/µ

cλ(λ−µ)
,

and the optimal inventory level of product k increases from −
√
crλ(µ−λ)/µ

c
to

√
crλ(µ−λ)/µ

c
each

time product k is polled, k= 1,2.

(ii) If r≤ Tsym, then w∗ = 0, and the optimal inventory level of product k increases from − sλ(µ−λ)
2µ−4λ

to sλ(µ−λ)
2µ−4λ each time product k is polled, k= 1,2.

3.3.2. Designing a BSI Policy that Achieves the Optimal PE Let (b∗,w∗) denote an

optimal solution to the one-cycle fluid optimization problem (2.3), and c∗ denote the optimal

objective value. Observe that it necessarily holds that c∗ ≤ c, for c defined in (3.3). We next show

that there exists some BSI policy with properly selected parameters, under which x∗ is a global

limit cycle for the HDS, implying that the reverse is also true, namely, that c∗ ≥ c, so that c∗ = c.

Lemma 3 (global stability of BSI) Let xe be a one-cycle PE-candidate with produce-up-to lev-

els be and total idle time we. Then xe is a global limit cycle for the HDS (3.1) under the BSI policy

with base-stock levels be and any idle time vector we ∈RK+ that satisfies
∑

k∈Kwe,k =we.

Lemma 3 applies to any PE-candidate xe given its parameterization (be,we), and thus to an

optimal solution of the one-cycle fluid optimization problem (2.3). Since the global limit cycle

under the translated BSI policy has time-average cost c∗ = c, the optimality of the BSI policy for

the FCP is straightforward, and is formalized in the next theorem.

Theorem 2 (fluid-optimal BSI) Let (b∗,w∗) be an optimal solution to the one-cycle fluid opti-

mization problem (2.3). Then the BSI policy with base-stock levels b∗ and any idle time vector w∗

that satisfies
∑

k∈Kw∗,k =w∗ is optimal for the FCP.

4. Asymptotic Optimality

We first establish that c∗ is a lower bound on the achievable costs, asymptotically.

Lemma 4 For any sequence of admissible controls {πn : n≥ 1}, it holds that lim inf
n→∞

C̄n
πn ≥ c∗ w.p.1.
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Recall from Section 2.4 that πnBSI denotes the control for the nth system that employs the base-

stock policy with some base-stock level Bn and idle time vector Wn, n≥ 1. We let {πnBSI,∗ : n≥ 1}

denote the sequence of controls with parameters determined by the fluid-optimal BSI policy as

follows Bn
∗,k := dnb∗,ke and W n

∗,k := nw∗,k for k ∈K, n≥ 1.

Lemma 5 Under Assumption 1, it holds that limn→∞ C̄
n
πn
BSI,∗

= c∗.

Lemmas 4 and 5 imply that {πnBSI,∗ : n≥ 1} is asymptotically optimal, from which Theorem 1

follows.

4.1. Linear Holding and Backlog Costs

The distributional assumption on the production and setup times needed for Lemma 5 largely

depends on the cost structure. For the special case in which the holding and backlog costs are linear,

we can relax Assumption 1 and impose conditions only on the second moments of the production

and setup time distributions.

Assumption 3 For all k ∈K,

(i) E [G2
k]<∞.

(ii) E [(Snk )2]<∞ for all n≥ 1 and, in addition, E
[
(S̄nk )2

]
→ s2k as n→∞.

Lemma 6 Assume that the holding and backlog cost functions hk and pk are linear for all k ∈K,

and that Assumption 3 holds. Then

lim
n→∞

C̄n
πn
BSI,∗

= c∗.

4.2. The Proposed Policy with Stochastic Refinement

There are multiple ways to translate the optimal solution to the FCP into a sequence of controls

for the stochastic systems. All of them achieve the optimal performance in the limit, but their

pre-limit performances can differ. In this section, we discuss a refined policy for convex holding

and backlog costs, in which, for each n≥ 1, we fix the idle time vector Wn
∗ = nw∗, and solve for

the exact optimal base-stock level given the idle times. While this policy achieves the same limit

as {πnBSI,∗ : n≥ 1}, it improves the performance of the stochastic system.

Given vectors of base-stock levels Bn and idle times Wn, we call

Y n
k (t) :=Bn

k −Xn
k (t), k ∈K, t≥ 0,

the shortfall process of product k; it is the difference between the prescribed base-stock level and

the actual inventory level.
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Let Y n := (Y n
k , k ∈K). The advantage of working with the shortfall process Y n over working with

Xn is that the evolution of Y n does not depend on the base-stock level Bn. To see this, assume

without loss of generality, that the initial inventory level is below the base-stock level, i.e., that

Xn
k (0)≤Bn

k , for all k ∈K. It is then easy to see that the evolution of Y n is the same as that of the

queue process (with the same initial condition) in a polling system under the exhaustive policy: Y n
k

is driven up by the arrival process of demands (“customers”), and down by the production process

of product k (“services”). Each time the facility polls product k, it continues producing product k

until Y n
k reaches 0. By construction, Y n stays non-negative at all time.

In what follows, we use Y n
k (∞) to denote the steady-state shortfall level for product k in the

nth system, which is well-defined under any stable control, k ∈ K, n ≥ 1. It is immediate that

the distribution of Y n
k (∞) also does not depend on the base-stock level Bn. Indeed, Y n

k (∞) is

completely determined by the following three primitives of the model plus the prescribed idle times:

(λ,G,Sn,Wn), where λ := (λk, k ∈K), G := (Gk, k ∈K), and Sn := (Snk , k ∈K).

The following proposition follows directly from Proposition 1 in Federgruen and Katalan (1996b).

Proposition 2 Assume that the holding and backlog costs hk and pk are convex for each k ∈ K.

For the nth stochastic system, n≥ 1, consider all base-stock policies with the given idle time vector

Wn
∗ . Let (Y n

k (∞), k ∈ K) denote the steady-state shortfall level. For product k ∈ K, the optimal

base-stock level B
′n
∗,k is obtained by determining the unique minimum of the single-variable convex

function

ψnk (x) =E
[
hk

(
[x−Y n

k (∞)]
+
)

+ pk

(
[Y n
k (∞)−x]

+
)]
, k ∈K. (4.1)

By Proposition 2, the optimal base-stock level B
′n
∗,k is the optimal solution to a newsvendor

problem with random demand Y n
k (∞), overage cost rate hk, and underage cost rate pk, k ∈ K.

Note that characterizing B
′n
∗ := (B

′n
∗,k, k ∈K) requires knowing the distribution of the steady-state

shortfall level Y n(∞). An efficient algorithm to approximate the distribution of Y n(∞) is provided

in Federgruen and Katalan (1996b), and thus B
′n
∗ can be computed numerically. Alternatively, the

distribution of Y n(∞) can be estimated via simulation.

Recall that under Assumption 1 (alternatively, Assumption 3 for linear costs), Theorem 1 estab-

lishes that the sequence of fluid-translated BSI policies {πnBSI,∗ : n≥ 1} is asymptotically optimal.

Let {π′nBSI,∗ : n≥ 1} denote the sequence of refined BSI policies with the exact optimal base-stock

levels {B′n∗ : n≥ 1} for the given vectors of idle times {Wn
∗ : n≥ 1}. Since for each n≥ 1, the refined

policy π
′n
BSI,∗ is no worse than πnBSI,∗, the sequence {π′nBSI,∗ : n≥ 1} must be asymptotically optimal

as well, which yields the following corollary.
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Corollary 1 Assume that the holding and backlog costs hk and pk are convex for each k ∈ K.

Under Assumption 1 (alternatively, Assumption 3 for linear holding and backlog cost functions pk

and hk, k ∈K), the sequence of controls {π′nBSI,∗ : n≥ 1} with stochastically refined base-stock levels

is asymptotically optimal; in particular C̄
′n
πn
BSI,∗

→ c∗ as n→∞.

Example 3 (linear holding and backlog costs, no setup cost) Assume that rk = 0, and

that pk and hk are linear, for all k ∈ K. It was shown in Example 1 that the optimal solution to

the fluid optimization problem (2.3) has total idle time w∗ = 0, cycle length τ∗ = s/(1− ρ), and

produce-up-to level b∗,k = pk(pk + hk)
−1(1 − ρk)λkτ∗, k ∈ K. The direct translation of the fluid-

optimal solution yields

Bn
∗,k = dnb∗,ke and W n

∗,k = nw∗,k = 0, k ∈K, n≥ 1.

For the refined policy, we impose the same idle time vector Wn
∗ = 0 for the nth system, n≥ 1. It

follows from Proposition 2 that, given Wn
∗ , the exact optimal base-stock level for the nth system

is given by

B
′n
∗,k = F−1Y n

k
(∞)

(
pk

pk +hk

)
, k ∈K, n≥ 1, (4.2)

where F−1Y n
k
(∞) is the inverse of the cumulative distribution function (cdf) of the steady-state shortfall

level Y n
k (∞). By Theorem 3.10 and equation (26) in Winands (2011), the steady-state shortfall

level converges weakly to a uniform random variable under the fluid scaling, namely,

Ȳ n
k (∞) ⇒ U [0, (1− ρk)λkτ∗] as n→∞, k ∈K. (4.3)

Thus, by (4.2) and (4.3), the sequence of fluid-scaled optimal base-stock levels for product k

converges to the inverse of the cdf of U [0, (1− ρk)λkτ∗] evaluated at the ratio pk/(pk +hk), i.e.,

B̄
′n
∗,k →

pk
pk +hk

(1− ρk)λkτ∗ = b∗,k as n→∞, k ∈K, (4.4)

where the equality follows from the solution to the FCP in Example 1. We note that the convergence

of B̄
′n
∗,k to b∗,k in (4.4) is expected, because B̄n

∗,k→ b∗,k as n→∞ by construction, and both B
′n
∗

and Bn
∗ are asymptotically optimal for the given idle time vector Wn

∗ .

5. A Numerical Study of the Fluid-Translated BSI Policy

Based on our asymptotic optimality result, we propose the following heuristic to develop good BSI

policies:

Step 1. Solve the one-cycle fluid optimization problem (2.3) analytically or numerically, and obtain
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an optimal produce-up-to level b∗ and cumulated idle time w∗.

Step 2. Construct a waiting time vector W∗ ∈ RK+ , with
∑

k∈KW∗,k = w∗. Step 3. Take the

base-stock levels to be B∗ = db∗e. Alternatively, for the given idle time vector W∗, compute the

exact optimal base-stock level B′∗ as in Proposition 2, either numerically (e.g., via the algorithm

in Federgruen and Katalan (1996b)), or via simulation. We refer to the former base-stock levels as

fluid-translated and the latter as stochastically-refined.

In Step 2 of the heuristic, there are multiple choices for the idle time vector. In particular, how

the sum w∗ is allocated among the K elements of the fluid idle time vector w∗ is immaterial for

the HDS, because the optimal PE-candidate x∗ is a global limit cycle under any such BSI policy,

so that all these policies are asymptotically optimal. However, different divisions of w∗ among the

elements of W∗ may lead to different performances in the stochastic system. Similarly, in Step 3, we

propose two alternative ways to construct the base-stock levels. While they are both asymptotically

optimal, the refined base-stock level B′∗ leads to better performance in the stochastic system for

a given W∗. In what follows, we compare the performance of different translations of the fluid

optimal policy using simulation.

We examine twelve systems with different setup times and traffic intensities. These systems are

grouped into three parameter sets as summarized in Table 1. Each system has three products, expo-

nential inter-demand and production times, and deterministic setup times. We assume polynomial

holding cost functions, where each pk, k ∈ K, is of the form pk(x) = (ax+ b)c for some coefficient

a ∈ R, constant b ∈ R, and exponent c ∈ R. The same structure is assumed for the backlog costs.

Within each set, we increase the setup times from 1 to 4. In addition, we increase the nominal

traffic intensity ρ from 0.7 to 0.9 at an increment of 0.1 across the three sets. For the systems listed

in Table 1, we numerically solve the fluid optimization problem (2.3); the solutions can be found in

Table 2. We observe that for the optimal fluid solutions, the total idle time tends to decrease and

the base-stock levels tend to increase as the setup times and nominal traffic intensity grow. Note

that in Table 2, several instances have the same optimal base-stock levels and objective values, e.g.,

systems 1–4 and systems 5 and 6. We formalize the intuition behind this phenomenon in Lemma

16 in Appendix E.1.

5.1. Translation of the Idle Times

For each system listed in Table 1, we assess four different divisions of the total idle time w∗:

1) W∗ = (w∗/3,w∗/3,w∗/3), 2) W∗ = (w∗,0,0), 3) W∗ = (0,w∗,0), and 4) W∗ = (0,0,w∗). We

simulate the system under the BSI policy with base-stock levels B∗ = db∗e and the four idle time

vectors, respectively. Table 3 summarizes the long-run average costs of the stochastic system under
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Table 1 System parameters

s1 s2 s3 a b c a b c a b c a b c a b c a b c r1 r2 r3

1 0.23 0.23 0.23 1 1 1 1 1 1 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
2 0.23 0.23 0.23 1 1 1 2 2 2 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
3 0.23 0.23 0.23 1 1 1 3 3 3 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
4 0.23 0.23 0.23 1 1 1 4 4 4 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
5 0.27 0.27 0.27 1 1 1 1 1 1 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
6 0.27 0.27 0.27 1 1 1 2 2 2 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
7 0.27 0.27 0.27 1 1 1 3 3 3 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
8 0.27 0.27 0.27 1 1 1 4 4 4 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
9 0.3 0.3 0.3 1 1 1 1 1 1 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
10 0.3 0.3 0.3 1 1 1 2 2 2 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
11 0.3 0.3 0.3 1 1 1 3 3 3 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000
12 0.3 0.3 0.3 1 1 1 4 4 4 1 1 2 2 2 2 3 3 2 3 1 2 2 2 2 1 3 2 1000 2000 1000

Set 1 
(𝜌 = 0.7)

Set 2 
(𝜌 = 0.8)

Set 3 
(𝜌 = 0.9)

p1System
p2 p3 h1 h2 h3

𝝀𝟏 𝝀𝟐 𝝁𝟏𝝀𝟑 𝝁𝟐 𝝁𝟑

Table 2 Optimal fluid solutions

b1 b2 b3

1 10.4 2.5 3.8 5.7 181.1
2 7.4 2.5 3.8 5.7 181.1
3 4.4 2.5 3.8 5.7 181.1
4 1.4 2.5 3.8 5.7 181.1
5 4.7 2.7 4.0 5.9 191.3
6 1.7 2.7 4.0 5.9 191.3
7 0.0 3.1 4.7 6.7 194.3
8 0.0 4.3 6.2 8.7 219.1
9 0.9 2.7 4.1 6.0 197.6
10 0.0 4.3 6.3 8.8 224.9
11 0.0 6.6 9.5 12.8 322.0
12 0.0 9.0 12.6 16.8 464.5

System

Set 1 
(𝜌 = 0.7)

Set 2 
(𝜌 = 0.8)

Set 3 
(𝜌 = 0.9)

Total 
idle time

Base-stock level 
Cost

the four policies. We also report the maximum performance difference, defined as the percentage

gap between the best and worst costs, among the four long-run average costs in the “Max gap”

column. We observe that the performances among different assignments of the total idle time w∗

are very similar. The gap between the best and the worst is less than 5% in all systems tested. (For

systems with w∗ = 0 in the optimal fluid solution (systems 10–12), there is no difference among the

four divisions because W∗ = 0.)

5.2. Translation of the Base-Stock Levels

In this section, we study the performance of the simple fluid-translated BSI policy with base-stock

level B∗ = db∗e and idle time W∗ = (w∗/3,w∗/3,w∗/3) in the stochastic system. We consider a

benchmark BSI policy where we optimize both the base-stock levels and the total idle time for the

stochastic system. In particular, for a given total idle time w ∈R+, we consider the idle time vector

W = (w/3,w/3,w/3), and use simulation to find the optimal base-stock levels corresponding to W

(Proposition 2). The optimal base-stock levels and total idle time are calculated by enumerating
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Table 3 Idle time assignments for the fluid-translated BSI policy

b1 b2 b3 (w*/3, w*/3, w*/3) (w*, 0, 0) (0, w*, 0) (0, 0, w*)
1 10.4 3 4 6 285.4 281.8 285.0 286.2 1.6%
2 7.4 3 4 6 285.4 288.6 281.3 289.8 3.0%
3 4.4 3 4 6 285.4 287.1 281.7 282.4 1.9%
4 1.4 3 4 6 285.4 282.4 280.4 287.4 2.5%
5 4.7 3 4 6 360.3 361.4 366.1 372.1 3.3%
6 1.7 3 4 6 360.3 363.4 371.2 354.3 4.8%
7 0.0 3 5 7 381.9 381.9 381.9 381.9 0.0%
8 0.0 4 6 9 408.8 408.8 408.8 408.8 0.0%
9 0.9 3 4 6 573.0 581.4 585.7 600.0 4.7%

10 0.0 4 6 9 721.1 721.1 721.1 721.1 0.0%
11 0.0 7 9 13 792.3 792.3 792.3 792.3 0.0%
12 0.0 9 13 17 1041.2 1041.2 1041.2 1041.2 0.0%

Set 3 
(𝜌 = 0.9)

Cost
Fluid-Translated BSI

Max gap

Set 1 
(𝜌 = 0.7)

Set 2 
(𝜌 = 0.8)

System
Total 

idle time
Base-stock level 

the values of w (with the corresponding optimal base-stock levels) to minimize the long-run average

cost. We refer to this benchmark policy as the optimal BSI policy.

Table 4 summarizes the parameters of the optimal BSI policy, including the total idle time and

the base-stock levels, and the cost under this policy. We then compare the simulated long-run

average cost under the fluid-translated BSI policy with parameters (B∗,W∗) to that under the

optimal BSI policy, and summarize the optimality gap in the last column of Tables 4. We observe

that the optimality gap is small in most cases. The gap is less than 6% for systems 1–8, 11, and 12.

However, when the system is critically loaded, i.e., ρ= 0.9, and when the setup times are small, i.e.,

si = 1 or 2, the optimality gap can be larger than 15%. The low accuracy in these examples follows

from the fact that the fluid model is not an appropriate approximation because the system is in

heavy traffic when ρ is large and the setup times are relatively small; a diffusion approximation

may be more appropriate in such cases; see, e.g., Markowitz et al. (2000).

6. Exact MDP Solutions

In this section, we compare the fluid-translated BSI policies (Bn
∗ ,W

n
∗ ) to the optimal polices derived

via MDP. We consider two MDP formulations for the SELSP. The first MDP generates policies

that are within our set of admission controls, while the second MDP may generate policies that are

not admissible according to Definition 1. In the first MDP (termed “MDP Idle-Fix”), we impose

the fluid-translated idle time vector W∗, and solve the MDP for the optimal lot sizing policy. In

the second MDP (termed “MDP General”), we relax the assumption on the static idle time vector,

and allow state-dependent idling behavior. In particular, when to start idling and how long to idle

before switching to (setting up for) the next product may depend on the inventory level at the
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Table 4 Exponentially distributed production times

Cost
b1 b2 b3 (w*/3, w*/3, w*/3)

1 10.1 3 4 6 272.4 4.8%
2 7.1 3 4 6 272.4 4.8%
3 4.1 3 4 6 272.4 4.8%
4 1.1 3 4 6 272.4 4.8%
5 4.0 3 5 7 342.0 5.3%
6 1.0 3 5 7 342.0 5.3%
7 0.4 4 6 9 366.4 4.2%
8 0.0 5 7 11 407.5 0.3%
9 0.3 4 6 9 494.6 15.9%

10 0.5 6 9 14 626.4 15.1%
11 0.0 8 12 17 748.6 5.8%
12 0.0 10 15 21 1004.0 3.7%

Set 1 
(𝜌 = 0.7)

Set 2 
(𝜌 = 0.8)

Set 3 
(𝜌 = 0.9)

System
Total 

idle time

Opt gap of 
fluid-

translated BSI

Simulated optimal BSI
Base-stock level 

decision epoch. We provide the detailed MDP formulations in Appendix E.2. We mention at the

outset that using MDP is computationally intensive, and is therefore not appropriate for systems

with multiple products. Thus, our goal is to demonstrate the effectiveness of our simple asymptotic

analyses.

To keep the problem tractable, we consider a two-product system with exponential inter-demand

and production times, deterministic setup times, and linear costs. The parameters for the problem

are summarized in Table 5. In each set of parameters, we examine a system of size n= 1,5,10,15,

where the mean setup time for the nth system is snk = skn, and the setup cost is rnk = rkn
2, for the

“base” mean setup time sk and setup cost rk in the system with n= 1, k ∈K. In the case of linear

costs, inflating the setup costs by n2 is consistent with the large-setup-time scaling introduced in

Section 2.3. To see this, note that the fluid-scaled long-run average cost for the nth system can be

expressed as

C̄n
πn =

1

n
lim
t→∞

∑
k∈K

(
1

t
rkn

2Γnπn,k(t) +
1

t

∫ t

0

(
hk
(
Xn
πn,k(s)

+
)

+ pk
(
Xn
πn,k(s)

−))ds)
=

1

n
lim
t→∞

∑
k∈K

(
1

nt
rkn

2Γnπn,k(nt) +
1

nt

∫ nt

0

(
hk
(
Xn
πn,k(s)

+
)

+ pk
(
Xn
πn,k(s)

−))ds)
= lim

t→∞

∑
k∈K

(
1

t
rkΓ

n
πn,k(nt) +

1

n2t

∫ nt

0

(
hk
(
Xn
πn,k(s)

+
)

+ pk
(
Xn
πn,k(s)

−))ds)
= lim

t→∞

1

t

∑
k∈K

(
rkΓ̄

n
πn,k(t) +

∫ t

0

(
hk
(
X̄n
πn,k(s)

+
)

+ pk
(
X̄n
πn,k(s)

−))ds) ,
which recovers (2.2).

For each system, we simulate the long-run average cost under 1) the fluid-translated BSI policy,

2) the MDP Idle-Fix policy, and 3) the MDP General policy. Table 6 lists the parameters for the
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fluid-translated BSI policy, costs under the three policies, and the optimality gaps of the fluid-

translated BSI policy relative to the two MDP-based policies. We observe that the optimality gap

of the fluid-translated BSI policy relative to the the MDP Idle-Fix policy is smaller than the gap

relative to the MDP General policy. This is well expected as the MDP Idle-Fix policies are more

restricted than the MDP General policies. Note that for the four systems in Set 2, the costs under

the MDP Idle-Fix and MDP General policies are indistinguishable; this is because the facility idles

for an almost negligible amount of time under the MDP General policy for this set of parameters.

We also observe that in all cases, the optimality gap decreases the n increases.

Table 5 MDP parameters

Scale
n s1 s2 h1 h2 p1 p2 r1 r2

1 0.5 0.6 3 3 0.2 0.4 1 2 3 6 1 1
5 0.5 0.6 3 3 1 2 1 2 3 6 25 25

10 0.5 0.6 3 3 2 4 1 2 3 6 100 100
15 0.5 0.6 3 3 3 6 1 2 3 6 225 225
1 0.6 0.5 3 3 0.1 0.3 1.3 3 4.6 4.2 0 0
5 0.6 0.5 3 3 0.5 1.5 1.3 3 4.6 4.2 0 0

10 0.6 0.5 3 3 1 3 1.3 3 4.6 4.2 0 0
15 0.6 0.5 3 3 1.5 4.5 1.3 3 4.6 4.2 0 0
1 2 2 8 8.5 0.1 0.3 1 2 4 8 0.5 1
5 2 2 8 8.5 0.5 1.5 1 2 4 8 12.5 25

10 2 2 8 8.5 1 3 1 2 4 8 50 100
15 2 2 8 8.5 1.5 4.5 1 2 4 8 112.5 225

Set 2 

Set 3

Set 1 

Parameters
𝝀𝟏 𝝀𝟐 𝝁𝟏 𝝁𝟐

Table 6 MDP costs

Scale
n b1 b2 Total idle time Cost Cost Optimality gap Cost Optimality gap
1 0.6 0.7 0.6 5.0 4.9 1.0% 3.6 38.0%
5 3.1 3.5 3.2 14.1 14.0 0.8% 11.8 19.3%
10 6.2 7.1 6.5 24.8 24.6 0.7% 22.4 10.8%
15 9.2 10.6 9.7 35.1 35.0 0.3% 32.8 6.9%
1 0.2 0.2 0.0 3.8 3.1 22.9% 3.1 22.9%
5 1.2 0.8 0.0 5.6 5.2 7.5% 5.2 7.5%
10 2.4 1.5 0.0 8.0 7.7 4.5% 7.7 4.5%
15 3.5 2.3 0.0 9.7 9.7 0.0% 9.7 0.0%
1 1.1 1.1 0.1 9.5 7.7 22.7% 6.6 44.1%
5 5.4 5.5 0.3 22.7 22.3 1.9% 20.7 9.6%
10 10.9 11.1 0.7 40.0 39.6 1.1% 37.8 5.7%
15 16.3 16.6 1.0 56.7 56.2 1.0% 55.1 2.8%

MDP Idle-Fix MDP GeneralFluid-translated policy

Set 1 

Set 2 

Set 3

In what follows, we examine the solutions to MDP Idle-Fix and MDP General. The goal is to

gain more insights into the structure of the optimal policies.
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6.1. MDP Idle-Fix

The state space for MDP Idle-Fix is (X1,X2,Z) ∈ Z × Z × {1,2}, where Z = i means that the

facility is at product i. Note that at each decision epoch, if Z = 1, the facility can choose to keep

producing the same product, or to idle and switch to the next product. If the facility chooses to

idle and switch, it does not produce any product for w∗/2 + s2 amount of time, after which the

location process Z enters state 2.

Figure 3 illustrates the MDP Idle-Fix policies for the four systems in Set 1. (Policies in the other

sets follow similar structure.) To facilitate comparison, we add the fluid-translated BSI policy to

each figure, with the black solid line marking the states (i.e., base-stock levels) at which the facility

switches from producing the current product to idling and setting up for the next one. We observe

that while the MDP Idle-Fix policy for n= 1 is quite different from the BSI policy, the two policies

are very close to each other for n≥ 5. In particular, we observe convergence of the MDP policy to

the BSI policy as n increases.

Figure 3 MDP Idle-Fix policies

(a) n= 1 (b) n= 5

(c) n= 10 (d) n= 15

6.2. MDP General

Different from MDP Idle-Fix where the idle-time vector is pre-specified, MDP General solves for

both the optimal lot scheduling policy and the state-dependent idling policy. In this case, the MDP
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has expanded state space (X1,X2,Z)∈Z×Z×{1,2,1I ,2I}. Here, Z = 1 indicates that the facility

is at product 1, and can choose to keep producing the same product, start idling, or set up for

product 2 for a total setup time s2. If the facility chooses to idle from state Z = 1, the location

process Z enters state Z = 1I immediately. When Z = 1I , the actions available are either to keep

idling (then Z stays at state 1I) or to set up for product 2 (then Z changes to state 2 after s2

amount of time). Similar dynamic holds for state Z = 2 and Z = 2I .

Figure 4 illustrates the MDP General policies for n= 1,5,10,15. In each figure with Z = i, i= 1,2,

the black solid line marks the states (i.e., base-stock levels) at which the fluid-translated BSI policy

switches from producing the current product to idling and setting up for the next product. We

observe that the two policies are substantially different even for large values of n, e.g., n= 10,15.

One reason for the disparity between the fluid-translated and MDP General policies is that

there can be multiple controls, all leading to the same asymptotically optimal PE. To see this,

we translate the MDP General policy for the HDS by applying the MDP policy corresponding to

state (dx1nc, dx2nc, z) if the HDS is at state (x1, x2, z). Figure 5 plots the PE under the translated

MDP General policy for n = 1,10,20. We see that as n increases, the PE under the translated

MDP General policy converges to the optimal fluid PE-candidate (marked in blue). This explains

the diminishing optimality gap of the BSI policy relative to the MDP General policy in Table 6.

Lastly, we comment that policies with state-dependent idling behavior are outside the set of

admissible controls in our theoretical analysis. Nevertheless, under the MDP General policy, the

system dynamic is still likely to converge to a stable HDS as the setup times increase. Thus, the

fluid-translated BSI policy may be asymptotically optimal among a large class of controls, i.e., any

sequence of controls under which the limiting fluid process converges to a PE.

7. Summary and Future Research

In this paper, we prove that the BSI policy is asymptotically optimal for the SELSP as the setup

times increase to infinity if either of the two conditions holds: (i) The holding and backlog costs

grow at most at a polynomial rate (of any degree), the production time distributions possess finite

m.g.f.’s in a neighborhood of zero, and the setup time distributions possess finite m.g.f.’s on the

positive real line; (ii) the holding and backlog costs are linear, and the production and setup

time distributions possess finite variances. Our analysis leverages a novel theoretical framework

developed in Hu et al. (2020a) to derive asymptotically optimal control for non-stationary stochastic

networks. Our results provide a rigorous theoretical justification for employing the BSI policy, which

has been widely studied in the literature and implemented in practice. Moreover, the deterministic
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Figure 4 MDP General policies

(a) n= 1

(b) n= 5

(c) n= 10

(d) n= 15
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Figure 5 PE under the translated MDP General policy for the HDS
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(c) n= 20

optimization problem that solves for the parameters of the asymptotically optimal BSI policy

extends beyond the conventional common cycle approach for the ESLP. Numerical experiments

suggest that a simple BSI policy derived from a deterministic optimization problem can achieve

robust, and near optimal performance, even when the setup times are moderate.
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Appendix A: Full HDS Representation

In Section 3, we characterize the fluid model as an HDS described by

·
x (t) = f(z(t)) z(t) = g(x(t), x(a(t−)), z(t−)), a(t) = h(x(t), x(a(t−)), z(t−)),

where f :Z →RK , g : RK ×RK ×Z →Z, and h :RK ×RK ×Z →R+. In particular, the function f regulates

the drift of the inventory level process, g determines the server location, and h specifies the most recent

polling epoch. We now characterize f , g, and h one by one, utilizing the lot sizing and idling functions

(φk, ηk, k ∈K) specified by the control. Noticeably, the functional forms of f , g, and h allow zero setup times

(subject to strictly positive total setup time in a cycle, i.e., s > 0), zero idle times, and zero productions.
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(I) It is easy to see (and is mentioned in Section 3) that the function f is given by

fk(x(t), z(t)) =

{
−λk +µk if z(t) = k

−λk otherwise
, k ∈K.

(II) The function g characterizes the location of the server as follows:

(i) If z(t−) = k and xk(t) = xk(a(t−)) + (µk−λk)φk (x(a(t−))), define

js := min{j > k : s(j mod K) > 0}

jv := min{j > k : φ(j mod K) (x(a(t−)))> 0}

jw := min{j ≥ k : η(j mod K) (x(a(t−)))> 0}.

(a) If js = min{js, jv, jw}, then g(x(t), x(a(t−)), z(t−)) = (js mod K)S.

(b) If jv = min{js, jv, jw} and jv < js, then g(x(t), x(a(t−)), z(t−)) = (jv mod K).

(c) If jw = min{js, jv, jw}, jw < js and jw < jv, then g(x(t), x(a(t−)), z(t−)) = (jw mod K)I .

(ii) If z(t−) = kI and xk(t) = xk(a(t−)) + (µk−λk)φk (x(a(t−)))−λkηk (x(a(t−))), define

js := min{j > k : s(j mod K) > 0}

jv := min{j > k : φ(j mod K) (x(a(t−)))> 0}

jw := min{j > k : η(j mod K) (x(a(t−)))> 0}.

(a) If js = min{js, jv, jw}, then g(x(t), x(a(t−)), z(t−)) = (js mod K)S.

(b) If jv = min{js, jv, jw} and jv < js, then g(x(t), x(a(t−)), z(t−)) = (jv mod K).

(c) If jw = min{js, jv, jw}, jw < js and jw < jv, then g(x(t), x(a(t−)), z(t−)) = (jw mod K)I .

(iii) If z(t−) = kS and xk(t) = xk(a(t−))−λk (φk−1 (x(a(t−))) + ηk−1 (x(a(t−))) + sk), define

js := min{j > k : s(j mod K) > 0}

jv := min{j ≥ k : φ(j mod K) (x(a(t−)))> 0}

jw := min{j ≥ k : η(j mod K) (x(a(t−)))> 0}.

(a) If js = min{js, jv, jw}, then g(x(t), x(a(t−)), z(t−)) = (js mod K)S.

(b) If jv = min{js, jv, jw} and jv < js, then g(x(t), x(a(t−)), z(t−)) = (jv mod K).

(c) If jw = min{js, jv, jw}, jw < js and jw < jv, then g(x(t), x(a(t−)), z(t−)) = (jw mod K)I .

(iv) Otherwise, g(x(t), x(a(t−)), z(t−)) = z(t−).

(III) The function h updates the most recent polling epoch according to

h(x(t), x(a(t−)), z(t−)) ={
t if z(t−) = kS and xk(t) = xk(a(t−))−λk (φk−1 (x(a(t−))) + ηk−1 (x(a(t−))) + sk)

a(t−) otherwise.

Appendix B: Proofs of Results in Section 3

B.1. Proof of Lemma 2

Proof: Let v(m−1) denote the beginning epoch of the ((m−1)Lφe +1)th production cycle, namely, v(m−1) :=

u((m−1)Lφe ), m≥ 1. Define T̃ (m) := v(m)−v(m−1). By construction, T̃ (m) contains exactly Lφe production cycles.

Since xφe is a PE, for any ε > 0, there exists some Nε ∈N such that for all m≥Nε,

‖xφu(v(m−1) + ·)−xφe (·)‖t < ε for all t > 0, |T̃ (m)− τφe |< ε, (B.1)
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and ∣∣∣∣∣
∫ v(m)

v(m−1)

xφu(s)ds−
∫ τφe

0

xφe (s)ds

∣∣∣∣∣< ε.
Since the PE-candidate xφe is bounded, (B.1) implies that xφu is also bounded. Due to the continuity of ψk,

xφe and xφu, the compositions ψk ◦ xφe and ψk ◦ xφu are uniformly continuous over any compact time interval,

k ∈K. It follows that there exists Mε ≥Nε such that for all m≥Mε,∣∣∣∣∣
∫ v(m)

v(m−1)

ψ(xφu(s))ds−
∫ τφe

0

ψ(xφe (s))ds

∣∣∣∣∣< ε.
For any time t ≥ 0, define M(t) := max{m ≥ 1 : v(m) ≤ t}. In addition, let r := Lφe

∑K

k=1 rk. Then, the

time-average cost of xφu can be written as

1

t

M(t)r+

Lφe∑
`=1

K∑
k=1

rk1
{a((M(t)−1)L

φ
e+`)

k
≤t}

+

∫ t

0

ψ(xφu(s))ds


=
M(t)

t
r+

1

t

M(t)∑
m=1

∫ v(m)

v(m−1)

ψ(xφu(s))ds+
1

t

 Lφe∑
`=1

K∑
k=1

rk1
{a((M(t)−1)L

φ
e+`)

k
≤t}

+

∫ t

v(M(t))

ψ(xφu(s))ds

 .

(B.2)

In what follows, we analyze each of the three terms on the right-hand side of (B.2). We shall consider t

sufficiently large, so that M(t)>Mε.

(I) For the first term on the right-hand side of (B.2), observe that

t

M(t)
=

1

M(t)

(
Mε−1∑
m=1

T̃ (m) +

M(t)∑
m=Mε

T̃ (m) +
(
t− v(M(t))

))

=
1

M(t)

M(t)∑
m=Mε

T̃ (m) + o(1)

≥ M(t)−Mε

M(t)
(τφe − ε) + o(1)→ τφe − ε as t→∞.

(B.3)

Then (B.3) implies that

lim inf
t→∞

t

M(t)
≥ τφe − ε.

Similarly, we can show that

lim sup
t→∞

t

M(t)
≤ τφe + ε.

(II) The second term on the right-hand side of (B.2) satisfies

1

t

M(t)∑
m=1

∫ v(m)

v(m−1)

ψ(xφu(s))ds=
1

t

Mε−1∑
m=1

∫ v(m)

v(m−1)

ψ(xφu(s))ds+
1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)

ψ(xφu(s))ds.
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For fixed ε > 0, Mε is fixed, so the first term on the right-hand side of the equality converges to 0 as t→∞.

Applying (B.3) for the second term gives that

1

t

M(t)∑
m=Mε

∫ v(m)

v(m−1)

ψ(xφu(s))ds=
M(t)

t

1

M(t)

M(t)∑
m=Mε

∫ v(m)

v(m−1)

ψ(xφu(s))ds

≤ M(t)

t

1

M(t)

M(t)∑
m=Mε

(∫ τφe

0

ψ(xφe (s))ds+ ε

)

≤
(

1

τφe − ε
+ o(1)

)(∫ τφe

0

ψ(xφe (s))ds+ ε

)

→ 1

τφe − ε

(∫ τφe

0

ψ(xφe (s))ds+ ε

)
as t→∞.

(B.4)

It follows from (B.4) that

lim sup
t→∞

1

t

M(t)∑
m=1

∫ v(m)

v(m−1)

ψ(xφu(s))ds≤ 1

τφe − ε

(∫ τφe

0

ψ(xφe (s))ds+ ε

)
.

Similarly, we can show that

lim inf
t→∞

1

t

M(t)∑
m=1

∫ v(m)

v(m−1)

ψ(xφu(s))ds≥ 1

τφe + ε

(∫ τφe

0

ψ(xφe (s))ds− ε

)
.

(III) For the third term on the right-hand side of (B.2), note that by definition of M(t),

Lφe∑
`=1

K∑
k=1

rk1
{a((M(t)−1)L

φ
e+`)

k
≤t}
≤ r.

In addition, we have that 0≤ t− v(M(t)) ≤ T̃ (M(t)+1), and T̃ (M(t)+1) is bounded due to (B.1). Thus,

lim
t→∞

1

t

 Lφe∑
`=1

K∑
k=1

rk1{a((M(t)−1)Le+`)
k

≤t}+

∫ t

v(M(t))

ψ(xφu(s))ds

= 0.

Combining (I), (II), and (III), together with the fact that ε is arbitrary, we have

1

t

M(t)r+

Lφe∑
`=1

K∑
k=1

rk1
{a((M(t)−1)L

φ
e+`)

k
≤t}

+

∫ t

0

ψ(xφu(s))ds

→ r

τφe
+

1

τφe

∫ τφe

0

ψ(xφe (s))ds as t→∞,

where the limit on right-hand side is equal to the cost of the PE-candidate xφe over one period. Q.E.D.

B.2. Proof of Proposition 1

Proof: We carry out the proof in two steps: First, we consider piecewise linear holding and backlog costs

that satisfy Assumption 2, and prove Proposition 1 in this context. In the second step, we generalize the result

to general (i.e., not necessarily piecewise linear) cost functions that satisfy Assumption 2 by approximating

bounded continuous functions over compact intervals with piecewise linear functions to arbitrary precision.

Step 1. Piecewise linear costs. For each k ∈K, we assume that the holding cost function hk :R+→R+

is piecewise linear with Nhk ∈N irregular points. Namely, there exists some constant h
(0)
k ∈R+, coefficients



36

h
(1)
k , h

(2)
k , ..., h

(Nhk )

k in R+, thresholds 0 = α
(1)
k <α

(2)
k · · ·<α

(Nhk )

k in R+, and α
(Nhk+1)

k =∞, such that for any

x∈R+,

hk(x) =


h

(1)
k (x−α(1)

k ) +h
(0)
k if α

(1)
k ≤ x<α

(2)
k

h
(2)
k (x−α(2)

k ) +h
(1)
k (α

(2)
k −α

(1)
k ) +h

(0)
k if α

(2)
k ≤ x<α

(3)
k

...

h
(Nhk )

k (x−α(Nhk )

k ) +
∑Nk−1

i=1 h
(i)
k (α

(i+1)
k −α(i)

k ) +h
(0)
k if α

(Nhk )

k ≤ x<α(Nhk+1)

k .

Similarly, we assume that the backlog cost function pk : R+→R+ is piecewise linear with Npk ∈N irregular

points, and is associated with constant p
(0)
k ∈R+, coefficients p

(1)
k , p

(2)
k , ..., p

(Npk )

k in R+, thresholds 0 = β
(1)
k <

β
(2)
k · · ·<β

(Npk )

k in R+, and β
(Npk+1)

k =∞.

Let xe be an L-cycle PE-candidate whose period is strictly larger than one production cycle. We will show

that based on xe, we can construct a one-cycle PE-candidate ye whose time-average cost is no worse than

that of xe. To do this, we note that the objective function of the fluid optimization problem (3.4) consists of

three parts: the time-average setup, holding, and backlog costs. In particular, it takes the form

1

τL

∑
k∈K

(
rkL+

∫ τL

0

(
hk
(
xe,k(s)

+
)

+ pk (xe,k(s)
−)
)
ds

)
=
∑
k∈K

(
1

τL
rkL+

1

τL

∫ τL

0

(
hk
(
xe,k(s)

+
)
ds
)

+
1

τL

∫ τL

0

(pk (xe,k(s)
−)ds)

)
.

In what follows, we will construct ye such that for each product k ∈ K, ye,k (I) (weakly) reduces the the

time-average holding cost, (II) (weakly) decreases the time-average backlog cost, and (III) maintains the

same time-average setup cost.

(I) For k ∈K, recall that Nhk is the total number of discontinuity points associated with the holding cost

function hk. The time-average holding cost of xe,k can be rewritten as

1

τL

∫ τL

0

(
hk
(
xe,k(s)

+
))
ds

=
1

τL

∫ τL

0

[(
h

(1)
k (xe,k(s)−α(1)

k ) +h
(0)
k

)
1{α(1)

k
≤xe,k(s)<α

(2)
k
}

+
(
h

(2)
k (xe,k(s)−α(2)

k ) +h
(1)
k (α

(2)
k −α

(1)
k ) +h

(0)
k

)
1{α(2)

k
≤xe,k(s)<α

(3)
k
} ds+ · · ·

+

(
h

(Nk)
k (xe,k(s)−α(Nk)

k ) +

Nk−1∑
`=1

h
(`)
k (α

(`+1)
k −α(`)

k ) +h
(0)
k

)
1
{α(Nk)

k
≤xe,k(s)<α

(Nk+1)

k
}

]
ds

=
1

τL

∫ τL

0

[
h

(1)
k

(
min{xe,k(s), α(2)

k }−α
(1)
k

)
1{xe,k(s)≥α(1)

k
} (B.5)

+h
(2)
k

(
min{xe,k(s), α(3)

k }−α
(2)
k

)
1{xe,k(s)≥α(2)

k
}+ · · ·

+h
(Nk)
k

(
min{xe,k(s), α(Nk+1)

k }−α(Nk)
k

)
1
{xe,k(s)≥α(Nk)

k
}

]
ds+h

(0)
k

=
1

τL

Nk∑
`=1

h
(`)
k

∫ τL

0

(
min{xe,k(s), α(`+1)

k }−α(`)
k

)
1{xe,k(s)≥α(`)

k
}ds+h

(0)
k .

For each summand in (B.5), define

A(`) (xe,k) :=

∫ τL

0

(
min{xe,k(s), α(`+1)

k }−α(`)
k

)
1{xe,k(s)≥α(`)

k
}ds, `= 1, ...,Nhk ,
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so that the time-average holding cost can be written as

1

τL

∫ τL

0

(
hk
(
xe,k(s)

+
))
ds=

1

τL

Nhk∑
`=1

h
(`)
k A(`) (xe,k) +h

(0)
k . (B.6)

We further partition the area A(`)(xe,k) into L sub-areas in each production cycle. In particular, let

a(`,m)(xe,k) denote the area beneath the inventory level xe,k, and between the horizontal lines at values α
(`)
k

and α
(`+1)
k over the mth production cycle within the time [0, τL], namely,

a(`,m) (xe,k) :=

∫ u
(m)
e

u
(m−1)
e

(
min{xe,k(s), α(`+1)

k }−α(`)
k

)
1{xe,k(s)≥α(`)

k
}ds, m= 1, ...,L, `= 1, ...,Nhk ,

where recall that u(m−1)
e denotes the beginning epoch of the mth production cycle for xe. Hence, following

(B.6), the time-average holding cost is equivalent to

1

τL

∫ τL

0

(
hk
(
xe,k(s)

+
))
ds=

1

τL

Nhk∑
`=1

h
(`)
k

L∑
m=1

a(`,m) (xe,k) +h
(0)
k . (B.7)

Corresponding to a(`,m) (xe,k), define τ (`,m) (xe,k) as the total time in the mth production cycle during

which the trajectory of xe,k stays above the horizontal line at α
(`)
k , namely,

τ (`,m) (xe,k) :=

∫ u
(m)
e

u
(m−1)
e

1{xe,k(s)≥α(`)
k
}ds, m= 1, ...,L, `= 1, ...,Nhk .

We make two important observations on the magnitude of a(`,m) (xe,k) and τ (`,m)(xe,k):

(i) Let τ+(xe,k) denote the total time xe,k stays non-negative, namely,

τ+(xe,k) :=

∫ τL

0

1{xe,k(s)≥0}ds.

Define

M
(`)
hk

:= max

{
τ+(xe,k)−L

(
α

(`)
k

µk−λk
+
α

(`)
k

λk

)
, 0

}
, `= 1, ...,Nhk . (B.8)

The total time xe,k stays above level α
(`)
k over the time [0, τL] is lower bounded by

L∑
m=1

τ (`,m)(xe,k)≥M (`)
hk
, `= 1, ...,Nhk . (B.9)

To see (B.9), note that during the total τ+(xe,k) time units when xe,k is non-negative, xe,k increases at

rate µk − λk, decreases at rate λk, and switches slope from µk − λk to −λk at most L times. Thus, for the

non-negative part of xe,k, the maximum amount of time the trajectory stays below level α
(`)
k is given by

L

(
α

(`)
k

µk−λk
+

α
(`)
k

λk

)
. In other words, the non-negative part of xe,k stays above level α

(`)
k for at least τ+(xe,k)−

L

(
α

(`)
k

µk−λk
+

α
(`)
k

λk

)
time units. Reflecting this lower bound at 0 gives the expression of M

(`)
hk

, and (B.9) follows.

(ii) The area a(`,m) (xe,k) is lower bounded by

a(`,m) (xe,k)≥
1

2

(
2τ (`,m)(xe,k)−

α
(`+1)
k −α(`)

k

λk
− α

(`+1)
k −α(`)

k

µk−λk

)(
α

(`+1)
k −α(`)

k

)
1{α(`+1)

k
−α(`)

k
<(1−ρk)λkτ

(`,m)(xe,k)}

+
1

2
(1− ρk)λk

(
τ (`,m)(xe,k)

)2
1{α(`+1)

k
−α(`)

k
≥(1−ρk)λkτ

(`,m)(xe,k)}, m= 1, ...,L, `= 1, ...,Nhk .
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This, together with (B.9), gives that

L∑
m=1

a(`,m) (xe,k)≥L
[

1

2

(
2M

(`)
hk
/L− α

(`+1)
k −α(`)

k

λk
− α

(`+1)
k −α(`)

k

µk−λk

)(
α

(`+1)
k −α(`)

k

)
1{α(`+1)

k
−α(`)

k
<(1−ρk)λkM

(`)
hk
/L}

+
1

2
(1− ρk)λk

(
M

(`)
hk
/L
)2

1{α(`+1)
k

−α(`)
k
≥(1−ρk)λkM

(`)
hk
/L}

]
, `= 1, ...,Nhk .

(B.10)

Based on xe,k, we construct a corresponding L-cycle closed loop ye,k whose non-negative part satisfies the

following conditions:

(a) The trajectory of ye,k stays non-negative for a total of τ+(xe,k) time units over the time interval [0, τL].

Namely, ye,k and xe,k spend the same amount of time above zero.

(b) The non-negative part of ye,k is identical (symmetric) over each production cycle, and forms a trian-

gular closed loop that increases at rate µk − λk, decreases at rate λk, and has a base of length τ+(xe,k)/L

(equivalently, M
(1)
hk
/L).

(The negative part of ye,k is immaterial for our current consideration and will be specified in (II)).

Note that steps (a) and (b) imply that in each production cycle, the part of ye,k that stays above level α
(`)
k

is again a triangular closed loop that increases at rate µk − λk, decreases at rate λk, and has a base whose

length is given by

τ (`,m)(ye,k) =M
(`)
hk
/L for M

(`)
hk

in (B.8), m= 1, ...,L, `= 1, ...,Nhk .

Thus, the total area beneath the trajectory of ye,k, and between the horizontal lines at values α
(`)
k and α

(`+1)
k

over the time [0, τL] satisfies

L∑
m=1

a(`,m) (ye,k) =L

[
1

2

(
2M

(`)
hk
/L− α

(`+1)
k −α(`)

k

λk
− α

(`+1)
k −α(`)

k

µk−λk

)(
α

(`+1)
k −α(`)

k

)
1{α(`+1)

k
−α(`)

k
<(1−ρk)λkM

(`)
hk
/L}

+
1

2
(1− ρk)λk

(
M

(`)
hk
/L
)2

1{α(`+1)
k

−α(`)
k
≥(1−ρk)λkM

(`)
hk
/L}

]
≤

L∑
m=1

a(`,m) (xe,k) by (B.10), `= 1, ...,Nhk .

(B.11)

Following (B.7) and (B.11), we get that

1

τL

∫ τL

0

(
hk
(
ye,k(s)

+
))
ds=

1

τL

Nhk∑
`=1

h
(`)
k

L∑
m=1

a(`,m) (ye,k) +h
(0)
k

≤ 1

τL

Nhk∑
`=1

h
(`)
k

L∑
m=1

a(`,m) (xe,k) +h
(0)
k

=
1

τL

∫ τL

0

(
hk
(
xe,k(s)

+
))
ds.

(II) Following similar procedures as in (I), we can construct the negative part of the L-cycle PE-candidate

ye. In particular, for k ∈K, let τ−(xe,k) denote the total time xe,k stays negative, i.e.,

τ−(xe,k) :=

∫ τL

0

1{xe,k(s)<0}ds.
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In addition, define

M (`)
pk

:= max

{
τ−(xe,k)−L

(
β

(`)
k

µk−λk
+
β

(`)
k

λk

)
, 0

}
, `= 1, ...,Npk .

We construct the negative part of ye,k as follows:

(a) The trajectory of ye,k stays negative for a total of τ−(xe,k) time units over the time interval [0, τL]. In

other words, ye,k and xe,k spend the same amount of time below zero.

(b) The negative part of ye,k is identical (symmetric) over each production cycle, and forms an upside-down

triangular closed loop that decreases at rate λk, increases at rate µk−λk, and has a base of length τ−(xe,k)/L

(equivalently, M (1)
pk
/L).

It follows from the same analysis as in (I) that

1

τL

∫ τL

0

(pk (ye,k(s)
−)) ds≤ 1

τL

∫ τL

0

(pk (xe,k(s)
−))ds.

(III) For k ∈K, the constructed ye,k is symmetric across the L production cycles. Thus, ye,k is indeed a

one-cycle PE-candidate with period τL/L. The time-average setup cost of ye,k is given by rk/(τL/L) = rkL/τL,

which is equal to that of xe,k.

By (I), (II), and (III), given any L-cycle PE-candidate xe with L> 1, we can construct a one-cycle PE-

candidate ye with a (weakly) lower time-average cost than that of xe. Therefore, exactly one of the following

two cases hold: (i) the fluid optimization problem (3.4) does not admit an optimal solution; (ii) the fluid

optimization problem (3.4) admits an optimal solution with L = 1. We complete the proof by showing that

there exists an optimal solution to the one-cycle fluid optimization problem (2.3), which implies that case

(ii) indeed holds.

In the fluid optimization problem (2.3), the decisions variables w and b fully determine the closed trajectory

xe. Thus, the optimization problem can be considered as optimizing f(w,b) over w ∈ R+ and b ∈ RK , for

some continuous function f : R+ × RK → R+. It is then easy to see from the formulation of the problem

and Assumption 2 that f(w,b) is coercive in (w,b), namely, for every sequence {(wn,bn) : n ≥ 1} with

||(wn,bn)|| →∞, it holds that limn→∞ f(wn,bn) =∞. Since the feasibility region R+×RK is non-empty and

closed, and since f is continuous and coercive over R+×RK , the set of optimal solutions to problem (2.3) is

non-empty and compact.

Step 2. Generalization to general cost functions. Let L ∈ N. For the fluid optimization problem

(3.4), it is without loss of optimality to consider L-cycle PE-candidates whose trajectory touches zero at

least once over the time [0, τL]. To see this, suppose the inventory level of product k, xe,k, in an L-cycle

PE-candidate xe is strictly above zero, for some k ∈K. We can then reduce the holding cost of xe,k (while the

associated setup and backlog costs stay the same) by shifting its trajectory downwards until its lowest point

touches zero. Note that this shift does not affect the inventory level processes of the other products, and thus

does not violate the feasibility condition (flow balance and synchronization of the trajectories) of the L-cycle

PE-candidate. The other case where the trajectory remains strictly below zero can be ruled out by similar

arguments. Now, for an L-cycle PE-candidate whose trajectory touches zero at least once, the inventory level

of product k is upper bounded by (λk +µk)τL, and lower bounded by −(λk +µk)τL, k ∈K. The cost function



40

ψk evaluated at any point of the PE is then bounded above by ψk((λk +µk)τL) +ψk(−(λk +µk)τL)<∞. We

can then find two piecewise linear functions p′k and h′k that jointly approximate ψk to arbitrary precision.

This step is standard, and follows the same derivation as in the proof of Proposition 4.1 in Hu et al. (2020a).

Q.E.D.

B.3. Proof of Lemma 3

Proof: We prove the lemma by establishing that the mapping of the inventory process from one production

cycle to the next under the BSI policy with parameters (be,we) is a contraction map.

Let k ∈K. Define the fluid shortfall level process for product k as yk(t) := bk−xk(t), with y(t) := (yk(t), k ∈
K), t≥ 0. We assume without loss of generality that xk(0)≤ bk for all k ∈K, so that y(t)≥ 0 for all t≥ 0.

Under the BSI policy with parameters (be,we), we consider the operator Tk : RK+ → RK+ , k ∈ K, which

maps the shortfall level at the polling epoch of product k to that at the polling epoch of product k + 1.

The time interval between these two time epochs consists of the production time of product k, the idle time

following the production, and the setup time for product k+ 1. Given y(t) = `∈RK+ at the polling epoch of

product k, the production run lasts for `k/(µk−λk) units of time, during which the shortfall level of product

k decreases at rate µk−λk, and of product j increases at rate λj , for j 6= k, j ∈K. Next, during the idle time

we,k and setup time sk+1, the shortfall level of product j increases at rate λj for all j ∈K.

Based on the system dynamics, we can write

Tk(`) =Ak`+Bk,

where

Ak` :=



`1 +λ1
`k

µk−λk
...

`k−1 +λk−1
`k

µk−λk
0

`k+1 +λk+1
`k

µk−λk
...

`K +λK
`k

µk−λk


, Bk :=

λ1(we,k + sk+1)
...

λK(we,k + sk+1)

 , k ∈K. (B.12)

We also write T := TK ◦ ... ◦ T1, the composition of the operators over one production cycle, which maps the

shortfall level from the beginning epoch of one production cycle to the next. It is easy to see that

T (`) =A`+B, where A :=AK · · ·A1 and B :=

K−1∑
i=1

(
K∏

j=i+1

Aj

)
Bi +BK .

Note that the operator Tk, k ∈K, is (i) monotone, i.e., if x≤ y, then Tk(x)≤Tk(y), (ii) affine, i.e., Ak`+Bk
for Ak,Bk in (B.12), and (iii) dominated, i.e., Bk ≥ 0. The properties of monotonicity, affinity, and dominance

are inherited by compositions and thus hold for T . Moreover, the operator T is not only dominated by

composition, but also strictly dominated, i.e., B> 0, due to the assumption that s > 0. The following lemma,

which is adapted from Theorem 1 in Feoktistova et al. (2012), establishes a contraction property for such

operators.

Lemma 7 Suppose that an iteration of a piecewise affine continuous monotone map T is strictly dominated

and this map has a fixed point T (`e) = `e ∈RK+ . Then this fixed point is unique and attracts all trajectories

of the iterated system `(m+1) = T (`(m)) with `(0) ∈RK+ , namely, limm→∞ `
(m) = `e.
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Let `e denote the shortfall level at the polling epoch of stage 1 in the one-cycle PE-candidate xe. It is easy

to see that `e is a fixed point of the operator T . It follows from Lemma 7 that `e is the unique fixed point to

which all trajectories of the shortfall level embedded at the polling epochs of stage 1 converge. This implies

that xe is a global limit cycle for the HDS under the BSI policy with parameters (be,we). Q.E.D.

Remark 1 A result similar to that of Lemma 3 can be found in (Gallego 1990, Proposition 3.2). There,

the author establishes that the BSI policy can “steer” the system back to the equilibrium (which is, in

our setting, a PE) after the system undergoes disruptions that takes it away from its “normal” state of

operations. By treating the system as an HDS, our proof of Lemma 3 is simpler than that in Gallego (1990).

B.4. Proof of Theorem 2

Proof: The statement follows from Lemmas 2 and 3 by taking the PE to be x∗e—the optimal PE-candidate

to problem (2.3), and the parameters of the BSI policy to be (b∗,w∗). Q.E.D.

Appendix C: Auxiliary Lemmas for the Proof of Asymptotic Optimality

In this section, we state several technical lemmas which are needed for the proof of the asymptotic optimality

result. First, recall from Definition 2 that for any idle time vector (Wk, k ∈ K) and stable lot sizing policy

π ∈Π, {X̃(m) :m≥ 0}, the inventory level process embedded at the polling epochs of product 1, is absorbed

into a positive recurrent class. Lemma 8 quantifies the expected cycle length for the inventory level process

in stationarity. Second, in Section 3 we use a fluid model to approximate the dynamics in the stochastic

system. Lemmas 9–11 formally justify the fluid approximation by establishing it as a FWLLN limit of the

sequence of stochastic systems as the setup times increase to infinity.

Recall that s=
∑

k∈K sk is the expected total setup time and w=
∑

k∈KWk is the total idle time in a cycle.

Lemma 8 Under any stable control π ∈Π, the stationary cycle length T has mean E [T ] = (s+w)/(1− ρ).

Proof: Let X(0) be distributed according to the stationary distribution of the embedded DTMC, namely,

X(0)
d
= X̃(∞). The cycle length T consists of the total time the facility spends producing each product, the

total idle time w, and the the total setup time in a cycle. Let Lk(T ) denote the number of units of product

k produced over the time interval [0, T ], k ∈K. It holds that

Xk(0)−Pk (T ) +Lk(T ) =Xk(T ), k ∈K, (C.1)

where

T =

K∑
`=1

L`(T )∑
j=1

G
(j)
` +w+

K∑
`=1

S`,

where G
(j)
` ’s are i.i.d. random variables distributed according to the production time of one unit of product

`∈K. Since Xk(0) and Xk(T ) are both distributed according to the stationary distribution of the embedded

DTMC, we have that E [Xk(0)] = E [Xk(T )], k ∈ K. Thus, taking expectation on both sides of (C.1) and

using Walld’s identity, we get that

E [Lk(T )] = λk

(
K∑
`=1

1

µ`
E [L`(T )] +w+ s

)
, k ∈K. (C.2)
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To see (C.2), note that

E

[
K∑
`=1

L`(T )∑
j=1

G
(j)
`

]
=

K∑
`=1

∞∑
j=1

E
[
G

(j)
` 1{L`(T )>j−1}

]
=

K∑
`=1

∞∑
j=1

E
[
E
[
G

(j)
` 1{L`(T )>j−1}

∣∣F
G

(j−1)
`

]]
=

K∑
`=1

E [G`]

∞∑
j=1

E
[
1{L`(T )>j−1}

]
=

K∑
`=1

1

µ`
E [L`(T )] ,

(C.3)

where F
G

(j−1)
`

denotes the (stopped) σ-field containing the history of process X̂ up to the end of the produc-

tion time G
(j−1)
` , and the event {L`(T ) = j − 1} ∈ F

G
(j−1)
`

. Since the production times are i.i.d. and G
(j)
` is

independent of F
G

(j−1)
`

, the third equality in (C.3) follows. Then, applying the same lines of analysis to the

other terms and taking the conditional expectation of the Poisson process in (C.1) gives the expectation in

(C.2). The unique solution to (C.2) is

E [Lk(T )] = λk
s+w

1− ρ
and E [T ] =

s+w

1− ρ
, k ∈K,

and the statement follows. Q.E.D.

Let A
(m),n
k and D

(m),n
k respectively denote the polling and departure epochs associated with product k in

the mth cycle in system n, k ∈ K, m≥ 1, n≥ 1, and let Ā
(m),n
k :=A

(m),n
k /n and D̄

(m),n
k :=D

(m),n
k /n denote

the fluid-scaled time epochs. Then V̄
(m),n
k := D̄

(m),n
k − Ā(m),n

k is the corresponding fluid-scaled busy time the

facility spends producing product k in the mth cycle in system n. Recall that X̄n is the normalized inventory

process in system n.

Lemma 9 (tightness) If {X̄n(0) : n≥ 1} is tight in RK, then {X̄n : n≥ 1} has a convergent subsequence in

DK. Further, the sample path of each subsequential limit of {X̄n : n≥ 1} is a solution to an HDS differential

equation of the form (3.1).

Proof: It follows from inspection that the solution to the HDS differential equation (3.1) can be described

inductively via its dynamics over each cycle:

xk(t) = xk(u
(m−1))− (t−u(m−1))λk +µk

∫ t

u(m−1)

1[
a

(m)
k

, d
(m)
k

)(s)ds, (C.4)

for t∈ [u(m−1), u(m)), k ∈K and m≥ 1, where 1A(s) denote the indicator function of the set A, which is equal

to 1 if s∈A, and equal to 0 otherwise.

Under the large-setup-time scaling, as s > 0, on every interval [0, t], t > 0, there are finitely many fluid-scaled

polling and departure epochs w.p.1. Thus, the polling epochs are sequentially compact in Rj+, where j is the

number of polling epochs for all n large enough. If no such j exists, then there exists a subsequence indexed by

nk with such a j for all k large enough, and we focus on each such subsequence. The sequential compactness

of the polling epochs implies that each of the subsequences has a further converging sub-subsequence.

Consider a (sub-)subsequence {X̄nj : j ≥ 1} over which the initial condition {X̄nj (0) : j ≥ 1} and polling

epochs {Ā(m),nj
k , j ≥ 1} converge over any compact intervals for each k ∈K. Consider a further subsequence

of {X̄nj : j ≥ 1}, e.g., {X̄nj` : ` ≥ 1}, over which the departure epochs {D̄(m),nj
k , j ≥ 1} converge (over any
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compact intervals), k ∈K. The rest of the proof is standard. In particular, the dynamics of X̄nj` are easily

seen to be a continuous mapping of its primitive over time intervals between switching (i.e., polling and

departure) epochs. The convergence of the switching epochs implies that the busy times {V̄ (m),nj
k , j ≥ 1}

converge for each k ∈K. Moreover, since the setup times converge weakly under the large-setup-time scaling,

it can be inferred that the sequence of fluid-scaled idle times, i.e., {W̄ (m),nj
k , j ≥ 1}, converges in R+ for each

k ∈K.

Let X̄ be a subsequential limit point of {X̄n : n≥ 1}. It is easy to see that the sample paths of X̄ are of

the form

X̄k(t) = X̄k(0)−λkt+µkΦ̄k(t), t≥ 0, k ∈K, (C.5)

where Φ̄k := {Φ̄k(t) : t≥ 0} is a cumulative process of the form

Φ̄k(t) =

∫ t

0

φk(s)ds, (C.6)

for a piecewise-constant function φk :R+→{0,1}. In particular, φk(t) is equal to 1 if the facility is producing

product k at time t, and equal to 0 otherwise. (Note that φk is piecewise-constant because there are finitely

many switching epochs over any compact time interval.) The statement follows from (C.4), (C.5), and (C.6).

Q.E.D.

It is significant that the limits of converging subsequence of {X̄n : n≥ 1} need not be deterministic. Lemma

9 can be strengthened to a FWLLN under an extra regularity condition on the double arrays of polling and

departure epochs.

Lemma 10 (FWLLN) Assume that X̄n(0)⇒ x(0) as n→∞, where x(0) is a deterministic element of

RK. If Ā
(m),n
k ⇒ a

(m)
k and D̄

(m),n
k ⇒ d

(m)
k for all m≥ 1 and k ∈ K, where a

(m)
k and d

(m)
k ’s are deterministic

elements of R+, then X̄n⇒ x in DK as n→∞, where x is the unique solution to the HDS (C.4) with initial

condition x(0), polling epochs {a(m)
k :m≥ 1}, and departure epochs {d(m)

k :m≥ 1}, k ∈K.

The proof of Lemma 10 follows closely that of Lemma 9 and is thus omitted.

It is important to note that if X̄n(0)⇒ x(0), convergence of X̄n to the fluid model should hold under any

“reasonable” policy, for example, under the sequence of BSI policies with parameters

Bn := dnbe and Wn := nw, n≥ 1. (C.7)

Lemma 11 (FWLLN under BSI) For the sequence of stochastic systems under the sequence of BSI poli-

cies with base-stock levels {Bn : n≥ 1} and idle times {Wn : n≥ 1} in (C.7), if X̄n(0)⇒ x(0) in RK, then

X̄n⇒ x in DK, where x the a fluid inventory level process under the BSI policy with base-stock levels b, idle

times w, and initial condition x(0).

Proof: Let n≥ 1. Under the BSI policy with base-stock levels Bn and idle times Wn, the shortfall level

of product k in the nth system is

Y n
k (t) =Bn

k −Xn
k (t), k ∈K, t≥ 0. (C.8)
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For Y n = (Y n
k , k ∈ K), we have derived in Section 4.2 that Y n can be equivalently considered as the queue

length process under the exhaustive policy for polling systems. Moreover, the idle times and the setup times

combined together can be considered as the switchover times for polling systems. The statement then follows

from Corollary 5.1 in Hu et al. (2020a) by noting that the exhaustive policy for polling systems is equivalent

to the binomial-exhaustive policy with parameters (1,1). Q.E.D.

Appendix D: Proof of results in Section 4

We first introduce more notation. For the nth system, n ≥ 1, let U (m),n denote the beginning epoch of

the (m + 1)st production cycle (equivalently, the polling epoch of product 1). We define the fluid-scaled

discrete-time inventory level process embedded at the polling epochs of product 1 as

X̃n(m) := X̄n(Ū (m),n), m≥ 0, n≥ 1.

Similarly, the embedded inventory level process for the fluid model under an admissible control is

x̃(m) := x(u(m)), m≥ 0.

D.1. Proof of Lemma 4

Proof: We conduct the proof in the following four steps: In Step 1, we examine the embedded DTMC

{X̃n(m) :m≥ 0} under a sequence of admissible controls {πn : n≥ 1}. We assume without loss of generality

that the sequence of stationary DTMC {X̃n(∞) : n≥ 1} is tight, and initialize system n according to X̃n(∞),

i.e., X̄n(0)
d
= X̃n(∞). We then restrict to a convergent subsequence of {X̄n : n ≥ 1}, and let X̄ denote its

limit point. For r ≥ 0, we construct a ball Br in RK with radius r, which both {X̃n(m) : m ≥ 0} and the

limit {X̃(m) :m≥ 1}) visit infinitely often, for sufficiently large n≥ 1. In Step 2, we translate the number

of discrete transitions after which the DTMC {X̃n(m) :m≥ 0} (alternatively, {X̃(m) :m≥ 0}) returns to Br
for the continuous-time process X̄n (X̄), n≥ 1. Let R̄nr (R̄r) denote the first return time of X̄n (X̄) to the

ball Br. We show that {R̄nr : n≥ 1} is uniformly integrable (UI), namely, R̄nr ⇒ R̄r and E
[
R̄nr
]
→ E

[
R̄r
]

as

n→∞. In Step 3, motivated by the observation that the limit X̄ returns to ball Br infinitely often and r is

arbitrary, we use a sample-path approach to formalize the idea that X̄ “gets close to being a PE-candidate”

as r decreases. In Step 4, combining the results in the first three steps, we show that the limiting cost

under {πn : n≥ 1} is arbitrarily close to the cost of a (sample-path dependent) PE-candidate w.p.1, which

is necessarily no lower than the optimal fluid cost c∗. Below, we elaborate on each step one by one.

Step 1. Stationary embedded DTMC. For asymptotic optimality, it is without loss of generality to

restrict to admissible controls under which the sequence of embedded stationary DTMC’s {X̃n(∞) : n≥ 1} is

tight with bounded limits in RK . Then with X̄n(0)
d
= X̃n(∞) for n≥ 1, the sequence {X̄n(0) : n≥ 1} is tight.

It follows from Lemma 9 that {X̄n : n≥ 1} has a bounded convergent subsequence in DK . Let X̄ denote a

subsequential limit of X̄n. Then the sample paths of X̄ are HDS of the form (C.4). To simply notation, we

shall henceforth use {X̄n : n≥ 1} to denote the converging subsequence with limit point X̄.

Let αn denote the (stationary) distribution of {X̃n(m) : m ≥ 0}. Since each process in the pre-limit is

stationary, the limit {X̃(m) :m≥ 0} must be stationary with some stationary distribution α. For r≥ 0, let

B(r) denote a ball in RK with positive measure, namely, α(B(r)) ∈ (0,1]. Let Br(0) denote the center of
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ball B(r). Note that we do not rule out the case where r= 0, which is tantamount to B(r) being a point in

RK and the limiting distribution α has a point mass.

By the weak convergence of {X̃n : n≥ 1} to X̃, we have

lim
n→∞

P
(
X̃n(0)∈B(r)

)
= P

(
X̃(0)∈B(r)

)
, (D.1)

so that

lim
n→∞

αn(B(r)) = α(B(r))> 0.

Note that (D.1) implies that αn(B(r))> 0 for sufficiently large n. For the purpose of proving the asymptotic

lower bound, we shall assume without loss of generality that αn(B(r)) > 0 for all n ≥ 1. Then {X̃n(m) :

m≥ 0} must return to B(r) infinitely often for all n≥ 1; the same holds for the limiting ball B(r) and the

limiting process {X̃(m) :m≥ 0}.

Let

Nn
r := inf{m≥ 1 : X̃n(m)∈B(r)} and Nr := inf{m≥ 1 : X̃(m)∈B(r)}.

Denote

αnr (·) := P
(
X̃n(0)∈ · | X̃n(0)∈B(r)

)
and αr(·) := P

(
X̃(0)∈ · | X̃(0)∈B(r)

)
.

In addition, we write Eαnr as the expectation operator for which P(X̃n(0) ∈ ·) = αnr (·), and Eαr as the

expectation operator for which P(X̃(0)∈ ·) = αr(·). It follows from basic DTMC theory that

lim
n→∞

Eαnr [Nn
r ] = lim

n→∞

1

αn (B (r))
=

1

α(B(r))
=Eαr [Nr] . (D.2)

Step 2. Uniformly integrable return time. To translate the number of discrete transitions of the

embedded DTMC for the continuous-time process, we define

R̄nr := inf{Ū (m),n > 0 : X̄n(Ū (m),n)∈B(r)}

R̄r := inf{Ū (m) > 0 : X̄(Ū (m))∈B(r)}.

By the weak convergence of X̄n to X̄, we have R̄nr ⇒ R̄r; see, e.g., Theorem 13.6.4 in Whitt (2002). In

addition, we can also establish the following UI result for {R̄nr : n≥ 1}, i.e.,

lim
n→∞

Eαnr
[
R̄nr
]

=Eαr
[
R̄r
]
. (D.3)

To see (D.3), let Lnk(t) denote the number of units of product k produced over the time interval [0, t], and

L̄nk(t) :=Lnk(nt)/n. We also define P n
k (t) as a Poisson process with rate λk and P̄ n

k (t) = P n
k (nt)/n. It can be

derived using similar lines of analysis as in the proof of Lemma 8 that

X̄n
k (0)− P̄ n

k

(
R̄nr
)

+ L̄nk(R̄nr ) = X̄n
k (R̄nr ), k ∈K, n≥ 1, (D.4)

and

R̄nr =
1

n

K∑
`=1

Ln` (nR̄nr )∑
j=1

G
(j)
` +Nn

r w̄
n +

Nnr∑
m=1

K∑
`=1

S̄
(m),n
` ,
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where G
(j)
` ’s are i.i.d. random variables distributed according to the production time of one unit of product `∈

K, and w̄n :=
∑

k∈K W̄
n
k . Moreover, plugging Eαnr

[
X̄n
k (0)

]
= Eαnr

[
X̄n
k (R̄nr )

]
into (D.4) by taking expectation

on both sides of the equation, and using Ward’s identity, we get that for each n≥ 1 and k ∈K,

Eαnr
[
L̄nk(R̄nr )

]
= λk

(
K∑
`=1

1

µ`
Eαnr

[
L̄n` (R̄nr )

]
+Eαnr [Nn

r ] w̄n +Eαnr [Nn
r ]s

)
. (D.5)

The unique solution to (D.5) is

Eαnr
[
L̄nk(R̄nr )

]
= λk

s+ w̄n

1− ρ
Eαnr [Nn

r ] and Eαnr
[
R̄nr
]

=
s+ w̄n

1− ρ
Eαnr [Nn

r ] . (D.6)

Similar “flow equation” as in (D.4) holds for the subsequential limit process X̄. In particular, by the

dynamics of X̄ in (C.5), we have

X̄k(R̄r) = X̄k(0)−λkR̄r +µkΦ̄k(R̄r), k ∈K,

where R̄r =
∑K

`=1 Φ̄`(R̄r) +Nrw̄ +Nrs, and w̄ is the limit point of {w̄n : n ≥ 1} in R+. Again, since both

X̄k(0) and X̄k(R̄r) are distributed according to the stationary distribution α restricted to the ball B(r), it

holds that Eαr
[
X̄k(0)

]
=Eαr

[
X̄k(R̄r)

]
, and that

λkEαr

[
K∑
`=1

Φ̄`(R̄r) +Nrw̄+Nrs

]
= µkEαr

[
Φ̄k(R̄r)

]
, k ∈K,

whose unique solution is

Eαr
[
Φ̄k(R̄r)

]
= ρk

s+ w̄

1− ρ
Eαr [Nr] and Eαr

[
R̄r
]

=
s+ w̄

1− ρ
Eαr [Nr] , k ∈K. (D.7)

Lastly, since w̄n→ w̄ as n→∞, and Eαnr [Nn
r ]→ Eαr [Nr] as n→∞ by (D.2), it follows from the second

equalities in (D.6) and (D.7) that Eαnr
[
R̄nr
]
→Eαr

[
R̄r
]

as n→∞, and (D.3) follows.

Step 3. “Nearly-periodic” limit. We next use a sample path argument to quantify the difference

between X̄ and a Nr-cycle PE-candidate over one return time to B(r) (from time 0 to R̄r). For each

sample point ω ∈ Ω, we use Nr(ω) to denote the number of cycles contained in the return time R̄r(ω)

for X̄(ω, ·), where the subscript ω marks the sample-path dependence. (Note that Nr(ω) and R̄r(ω) are

deterministic elements of N and R+, respectively.) It follows from (3.6) that τNr(ω) = (s+ w̄)Nr(ω)/(1− ρ)

is the corresponding cycle length for the Nr(ω)-cycle PE-candidate.

Lemma 12 There exist constants d1, d2 > 0 such that the following hold.

(i) It holds w.p.1 that ∣∣R̄r − τNr ∣∣≤ d1r. (D.8)

(ii) For any sample point ω ∈ Ω (except for those in a set of measure zero), there exists an Nr(ω)-cycle

PE-candidate xω such that

||X̄(ω, ·)−xω||R̄r(ω)∨τNr(ω)
≤ d2r, (D.9)

where for x, y ∈R, x∨ y := min{x, y}.
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The proof of Lemma 12 is relegated to Appendix D.1.1.

For the following, we assume without loss of generality that R̄r(ω)≥ τNr(ω). (The other case follows similar

lines of analysis.) Note that (D.9) implies that

max
k∈K
|X̄k(ω, t)−xωk (t)| ≤ d2r for all t∈ [0, R̄r(ω)]. (D.10)

Recall that B0 is the center of B(r), and xω(0) = xω(τNr(ω)). Since ||xω(0)−B0|| ≤ r, it holds that

max
k∈K

xωk (τNr(ω))≤max
k∈K

B0
k + r.

Then (D.10) implies that

max
k∈K

X̄k(ω, τNr(ω))≤max
k∈K

B0
k + r+ d2r,

and in turn, for all t∈ [τNr(ω), R̄r(ω)],

max
k∈K

X̄k(ω, t)≤max
k∈K

X̄k(ω, τNr(ω)) + max
k∈K
{λk +µk−λk}(t− τNr(ω))

≤max
k∈K

B0
k + r+ d2r+ max

k∈K
{µk}(R̄r(ω)− τNr(ω))

≤max
k∈K

B0
k + r(1 + d2 + max

k∈K
{µk}d1) by (D.8).

(D.11)

Let ε > 0. We select r > 0 that satisfies the following three conditions:

First, since X̄(ω, ·) is bounded, and since ψ, xω and X̄(ω, ·) are continuous, the composite functions ψ ◦xω

and ψ ◦ X̄(ω, ·) are both uniformly continuous over any compact time interval. From (D.9), we have there

exists r > 0 small enough such that

|ψ(X̄(ω, t))−ψ(xω(t))|< ε/3, for all t∈ [0, τNr(ω)]. (D.12)

Second, (D.11) and the continuity of ψk, k ∈K, imply that r can be made sufficiently small such that for

all t∈ [τNr(ω), R̄r(ω)],

ψ(X̄(ω, t))≤Kmax
k∈K

ψk(X̄k(ω, t))

≤Kmax
k∈K

ψk(max
k∈K

B0
k + r(1 + d2 + max

k∈K
{µk}d1))≤Kmax

k∈K
ψk(max

k∈K
B0
k) + ε.

Then by (D.8) and the fact that τNr(ω) ≥ τ1,

1

τNr(ω)

∫ R̄r(ω)

τNr(ω)

ψ(X̄(ω, s))ds≤ 1

τ1
(Kmax

k∈K
ψk(max

k∈K
B0
k) + ε)d1r < ε/3. (D.13)

Third, we consider r such that

2r(1− ρ)

s+ w̄
< ε/3. (D.14)
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With our choice of r, the time-average cost of X̄(ω, ·) over one return time, in comparison to that of the

constructed PE-candidate xω, satisfies∣∣∣∣∣ 1

R̄r(ω)

(
rNr(ω) +

∫ R̄r(ω)

0

ψ(X̄(ω, s))ds

)
− 1

τNr(ω)

(
rNr(ω) +

∫ τNr(ω)

0

ψ(xω(s))ds

)∣∣∣∣∣
=

∣∣∣∣∣
(

1

R̄r(ω)
− 1

τNr(ω)

)
rNr(ω) +

1

R̄r(ω)

(∫ τNr(ω)

0

ψ(X̄(ω, s))ds+

∫ R̄r(ω)

τNr(ω)

ψ(X̄(ω, s))ds

)

− 1

τNr(ω)

∫ τNr(ω)

0

ψ(xω(s))ds

∣∣∣∣
≤2

1

τNr(ω)

rNr(ω) +
1

τNr(ω)

∫ τNr(ω)

0

|ψ(X̄(ω, s))−ψ(xω(s))|ds+
1

τNr(ω)

∫ R̄r(ω)

τNr(ω)

ψ(X̄(ω, s))ds

=2
1

(s+ w̄)Nr(ω)/(1− ρ)
rNr(ω) +

1

τNr(ω)

∫ τNr(ω)

0

|ψ(X̄(ω, s))−ψ(xω(s))|ds

+
1

τNr(ω)

∫ R̄r(ω)

τNr(ω)

ψ(X̄(ω, s))ds

≤2r(1− ρ)

s+ w̄
+

1

τNr(ω)

∫ τNr(ω)

0

|ψ(X̄(ω, s))−ψ(xω(s))|ds+
1

τNr(ω)

∫ R̄r(ω)

τNr(ω)

ψ(X̄(ω, s))ds

<ε by (D.12)–(D.14).

(D.15)

Step 4. Lower bound for long-run average cost. Let cω denote the time-average total cost of xω over

the return time, i.e.,

cw :=
1

τNr(ω)

(
rNr(ω) +

∫ τNr(ω)

0

ψ(xω(s))ds

)
.

By (D.15) and the fact that cw ≥ c∗, we have

1

R̄r(ω)

(
rNr(ω) +

∫ R̄r(ω)

0

ψ(X̄(ω, s))ds

)
> cω − ε≥ c∗− ε. (D.16)

Since (D.16) holds for all ω (except for those in a set of measure zero), it holds that

1

R̄r

(
rNr +

∫ R̄r

0

ψ(X̄(s))ds

)
≥ c∗− ε w.p.1. (D.17)

Lastly, by (D.1) and the regenerative structure of the inventory level process, we have

lim inf
n→∞

C̄n = lim inf
n→∞

lim
t→∞

1

t

(
rΓ̄n(t) +

∫ t

0

ψ
(
X̄n(s)

)
ds

)
(D.18)

= lim inf
n→∞

Eαnr
[
rNn

r +
∫ R̄nr

0
ψ
(
X̄n(s)

)
ds
]

Eαnr
[
R̄nr
] w.p.1 by the renewal-reward theorem

≥
lim inf
n→∞

Eαnr
[
rNn

r +
∫ R̄nr

0
ψ
(
X̄n(s)

)
ds
]

lim sup
n→∞

Eαnr
[
R̄nr
]

=
lim inf
n→∞

Eαnr
[
rNn

r +
∫ R̄nr

0
ψ
(
X̄n(s)

)
ds
]

Eαr
[
R̄r
] by (D.3)

≥
Eαr

[
lim inf
n→∞

(
rNn

r +
∫ R̄nrn

0
ψ
(
X̄n(s)

)
ds
)]

Eαr
[
R̄r
] by Fatou’s lemma

=
Eαr

[(
1
R̄r

(
rNr +

∫ R̄r
0

ψ
(
X̄(s)

)
ds
))

R̄r

]
Eαr

[
R̄r
]
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≥
Eαr

[
(c∗− ε)R̄r

]
Eαr

[
R̄r
] by (D.17)

= c∗− ε.

Note that in second equality in (D.18), for non-negative costs, the renewal-reward theorem holds regardless

of whether Eαnr
[
rNn

r +
∫ R̄nr

0
ψ
(
X̄n(s)

)
ds
]
<∞; see Theorem 2.2.1 and the corresponding remarks in (Tijms

2003, p.21). The statement of Lemma 4 follows because (D.18) holds for arbitrary ε > 0. Q.E.D.

D.1.1. Proof of Lemma 12

Proof: (i) By (C.5) and the fact that ‖X̄(R̄r)− X̄(0)‖ ≤ 2r, it holds that for each k ∈K,

− 2r ≤ −µkΦ̄k(R̄r) +λkR̄r ≤ 2r, (D.19)

so that ∑
k∈K

(−2r/µk + ρkR̄r) ≤
∑
k∈K

V̄k(R̄r) ≤
∑
k∈K

(2r/µk + ρkR̄r). (D.20)

Since R̄r is the total length of the Nr cycles, it consists of sNr units of time the facility spends setting up,

w̄Nr units of time the facility idles, and the time the facility spends producing each product. Thus,

R̄r = sNr + w̄Nr +
∑
k∈K

Φ̄k(R̄r).

It then follows from (D.20) that

sNr + w̄Nr +
∑
k∈K

(
−2r/µk + ρkR̄r

)
≤ R̄r ≤ sNr + w̄Nr +

∑
k∈K

(
2r/µk + ρkR̄r

)
,

so that

− 2r

1− ρ
∑
k∈K

1

µk
≤ R̄r − τNr ≤

2r

1− ρ
∑
k∈K

1

µk
. (D.21)

Thus, letting d1 := 2
1−ρ

∑
k∈K

1
µk

gives (D.8) in Lemma 12.

(ii) Let ω ∈ Ω. In what follows, all the random variables and processes are assumed to be realizations

corresponding to that fixed ω in the sample space. To simplify notation, we drop ω from the notation, except

for the constructed PE-candidate xω.

Consider the limiting process X̄ over the time interval [0, R̄r]. For product k ∈K, let V̄
(m)
k , m ∈ 1, ...,Nr,

denote the busy time the facility spends producing product k in the mth cycle. By construction,

Φ̄k(R̄r) =

Nr∑
m=1

K∑
`=1

V̄
(m)
` , k ∈K.

It follows from (D.19) and (D.21) that for k ∈K,

− 2r

(
1

µk
+

ρk
1− ρ

∑
k∈K

1

µk

)
≤ Φ̄k(R̄r)− ρkτNr ≤ 2r

(
1

µk
+

ρk
1− ρ

∑
k∈K

1

µk

)
. (D.22)

Let δk := Φ̄k(R̄r)− ρkτNr . (D.22) implies that

|δk| ≤ 2r

(
1

µk
+

ρk
1− ρ

∑
k∈K

1

µk

)
, k ∈K.
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We next construct the corresponding Nr-cycle PE-candidate xω by taking xω(0) := X̄(0) and then speci-

fying the busy times. Let (V̄
′(m)
k ,m= 1, ...,Nr) denote the busy time the facility spends producing product

k in cycles 1 to Nr.

(1) For product k with δk < 0, we take V̄
′(m)
k := V̄

(m)
k for m= 2, ...,Nr, but V̄

′(1)
k := V̄

(1)
k + |δk|. This means

that the Nr-cycle PE-candidate xω has identical busy times for product k as those in X̄, except that the

first busy time is prolonged by |δk|.
(2) For product k with δk > 0, we take V̄

′(m̂)
k := V̄

(m̂)
k − δk for some m̂ ∈ {1, ...,Nr} with V̄

(m̂)
k ≥ δk. (We

know such m̂ exists for sufficiently small r due to (D.19) and (D.22).) In addition, we take V̄
′(m)
k := V̄

(m)
k

for all m= 1, ...,Nr, m 6= m̂. Thus, the Nr-cycle PE-candidate xω has identical busy times for product k as

those in X̄, except that one busy time is shortened by δk.

(3) For product k with δk = 0, we take V̄
′(m)
k := V̄

(m)
k for all m = 1, ...,Nr. Namely, the Nr-cycle PE-

candidate xω has identical busy times for product k as those in X̄.

Observe that the constructed busy times satisfy flow balance for the inventory level of all products, i.e.,
Nr∑
m=1

V̄
′(m)
k = ρkτNr k ∈K,

so that xω(τNr ) = xω(0). Moreover, we will show that

||X̄ −xω||R̄r∨τNr ≤

(
2rK

1− ρ
∑
k∈K

1

µk

)
max
k∈K
{µk} . (D.23)

To see (D.23), note that with the same initialization, X̄ and xω follow identical trajectory until V̄
′(m)
k 6=

V̄
(m)
k , for some k ∈ K, m ∈ {1, ...,Nr}. Namely, X̄(t) = xω(t) for all t ∈ [0, Ā

(m)
k ], where Ā

(m)
k is the polling

epoch of product k in the mth cycle. By construction, |V̄
′(m)
k − V̄ (m)

k | = |δk|. Since the inventory level of

product ` always decreases at rate λ` and increases at rate µ`−λ`, it holds for product ` that

||X̄`−xω` ||D̄(m)
k
∨D̄
′(m)
k

≤ |δk| (λ` +µ`−λ`) = |δk|µ`, `∈K,

and that

||X̄ −xω||
D̄

(m)
k
∨D̄
′(m)
k

≤ |δk|max
k∈K
{µk} ,

where D̄
(m)
k and D̄

′(m)
k are the departure epochs of product k in the mth cycle, respectively.

After time D̄
(m)
k (or D̄

′(m)
k ), X̄ and xω increase and decrease at the same rate over the same time intervals,

until another perturbed busy time V̄
′(m̂)

k̂
6= V̄

(m̂)

k̂
, for some k̂ ∈K, m̂∈ {1, ...,Nr}. Following similar derivation

as above, the second perturbation can further enlarge the difference between X̄ and xω (from time zero to the

departure epoch after the busy time in consideration) by a maximum of (|δk|+ |δk̂|) maxk∈K {µk}. Formally,

we have

||X̄ −xω||
D̄

(m̂)

k̂
∨D̄
′(m̂)

k̂

≤ (2|δk|+ |δk̂|) max
k∈K
{µk} .

The same arguments continue to the end of the Nrth cycle. In particular,

||X̄ −xω||R̄r∨τNr ≤
∑
k∈K

K|δk|max
k∈K
{µk}

≤K
∑
k∈K

2r

(
1

µk
+

ρk
1− ρ

∑
k∈K

1

µk

)
max
k∈K
{µk} by (D.22)

=

(
2rK

1− ρ
∑
k∈K

1

µk

)
max
k∈K
{µk} ,
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and (D.23) is established.

Setting d2 :=
(

2K
1−ρ

∑
k∈K

1
µk

)
maxk∈K {µk} gives (D.9) in Lemma 12. Q.E.D.

D.2. Proof of Lemma 5

Proof: We proceed the proof with the following steps: In Step 1, we apply Lemmas 3 and 11 to show that

under the sequence of BSI policies with parameters defined in (C.7), the inventory level process {X̄n : n≥ 1}

first converges to the fluid model as setup times grow without bound, and the fluid model converges to a

global limit cycle as time goes to infinity. In Step 2, we show that the stationary sequence of inventory levels

converges to the same global limit cycle under the large-setup-time scaling. This is equivalent to interchanging

the limits as in the first step, namely, first considering the steady-state of the stochastic system as time goes

to infinity and then letting the setup times diverge. In Step 3, we employ the interchange of limits result

in the first two steps and show that the statement of Lemma 5 holds under an interchange of limit and

expectation. In Step 4, we justify the interchange of limit and expectation in the third step by proving that

the sequence of fluid-scaled cumulative cost over one stationary cycle is UI under Assumption 1.

Step 1. Global limit cycle of the fluid limit. Consider the sequence of inventory levels {X̄n : n≥ 1}

under the sequence of BSI policies with base-stock levels {Bn : n≥ 1} and idle times {Wn : n≥ 1} in (C.7).

Let x be the fluid inventory level process under the BSI policy with base-stock levels b and idle times w.

As a direct consequence of Lemma 11, it holds that if X̄n(0)⇒ x(0) in RK , then

X̃n(m)⇒ x̃(m) as n→∞ for all m≥ 0. (D.24)

Moreover, it follows from Lemma 3 that

x̃(m)→ xe(a1) as m→∞, (D.25)

where xe is the global limit cycle for x, and a1 denotes a generic polling epoch of product 1 in equilibrium.

Combining (D.24) and (D.25), we get that for any real-valued, continuous and bounded function f on RK ,

lim
m→∞

lim
n→∞

E
[
f
(
X̃n(m)

)]
= f (xe(a1)) . (D.26)

Step 2. Interchange of limits. We now interchange the order of taking limits in (D.26), namely, we first

consider the steady state of the stochastic process (m→∞), and then apply the large-setup-time scaling

(n→∞) on the steady state. Note that the steady state in the first limit is well defined due to the stability

of the BSI policy, namely, for each n≥ 1,

X̃n(m)⇒ X̃n(∞) as m→∞,

where the random variable X̃n(∞) denotes the stationary distribution of the DTMC {X̃n(m) :m≥ 0}. The

next lemma further implies that

X̃n(∞)⇒ xe(a1) as n→∞.
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Lemma 13 (interchange of limits) Consider the sequence of stochastic systems under the sequence of

BSI policies with base-stock levels {Bn : n ≥ 1} and idle times {Wn : n ≥ 1} defined in (C.7). For any

real-valued, continuous and bounded function f on RK,

lim
m→∞

lim
n→∞

E
[
f
(
X̃n(m)

)]
= lim
n→∞

lim
m→∞

E
[
f
(
X̃n(m)

)]
= f (xe(a1)) , (D.27)

where xe is the global limit cycle under the BSI policy with parameters b and idle times w, and a1 denotes

a generic polling epoch of product 1 in the limit cycle.

The proof of Lemma 13 follows from Lemma 5.2 in Hu et al. (2020a) with the following modification.

Recall from Section 4.2 that the shortfall level process is equivalent to the queue length process under the

exhaustive policy for polling systems. In addition, the exhaustive policy for polling systems is equivalent to

the binomial-exhaustive policy with parameters (1,1) in Hu et al. (2020a). The idle times and the setup

times can be considered together as the switchover times for polling systems. As a consequence, Lemma 5.2

in Hu et al. (2020a) implies that (D.27) holds for the shortfall levels embedded at the polling epochs, namely,

for Ỹ n(m) := Ȳ n(Ū (m),n) and ye := bk−xe, it holds that

lim
m→∞

lim
n→∞

E
[
f
(
Ỹ n(m)

)]
= lim
n→∞

lim
m→∞

E
[
f
(
Ỹ n(m)

)]
= f (ye(a1)) . (D.28)

Then, with Ỹ n(m) = Bn− X̃n(m) for all m≥ 0 and n≥ 1, we derive from (D.28) that

lim
m→∞

lim
n→∞

E
[
f
(
X̃n(m)

)]
= lim
n→∞

lim
m→∞

E
[
f
(
X̃n(m)

)]
, (D.29)

and (D.27) follows from (D.26) and (D.29).

Step 3. Long-run average cost. For the nth stochastic system under the base-stock policy with base-

stock levels Bn and idle times Wn, we follow similar convention as in Appendix D.2 and use αn to denote the

stationary distribution (alternatively, a stationary distribution if there exist more than one closed classes) of

the embedded DTMC {X̃n(m) :m≥ 0}. In addition, we write Eαn as the expectation operator under which

P(X̃n(0)∈ ·) = αn(·), namely, the DTMC is initiated in stationarity. Moreover, let T̄ n denote the fluid-scaled

length of a stationary production cycle, which is finite w.p.1 under any stable control. Define the fluid-scaled

cumulated cost over one stationary cycle

Ψ̄n := r+

∫ T̄n

0

ψ(X̄n(s))ds. (D.30)

For each n≥ 1, let M̄n(t) := max{m≥ 1 : Ū (m),n ≤ t}. The fluid-scaled long-run average cost for the nth

system can be written as

C̄n =
1

t

(
rM̄n(t) +

∑
k∈K

rk1{Ā(M̄n(t)+1),n≤t}+

∫ t

0

ψ(X̄n(s))ds

)

=

∑M̄n(t)
m=1

(
r+

∫ Ū(m),n

Ū(m−1),n ψ(X̄n(s))ds
)

+
∫ t
Ū(M̄n(t)),n ψ(X̄n(s))ds+

∑
k∈K rk1{Ā(M̄n(t)+1),n≤t}∑M̄n(t)

m=1 T̄ (m),n + (t− Ū (M̄n(t)),n)

=

1
M̄n(t)

∑M̄n(t)
m=1

(
r+

∫ Ū(m),n

Ū(m−1),n ψ(X̄n(s))ds
)

1
M̄n(t)

∑M̄n(t)
m=1 T̄ (m),n + (t− Ū (M̄n(t)),n)

+ o(1)→
Eαn

[
Ψ̄n
]

Eαn
[
T̄ n
] w.p.1,

(D.31)
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where the convergence follows from the convergence of the DTMC to the stationary distribution αn.

The derivation above applies to any sequence of base-stock policies with base-stock levels {Bn : n≥ 1} and

idle times {Wn : n≥ 1} in (C.7). Thus, for the sequence of fluid-translated BSI policies {πn∗ : n≥ 1}, (D.31)

implies that

lim
n→∞

C̄n
πn∗

= lim
n→∞

Eαn
[
Ψ̄n
πn∗

]
Eαn

[
T̄ nπn∗
] = lim

n→∞

1

τ∗
Eαn

[
Ψ̄n
πn∗

]
, (D.32)

where the second equality follows from Lemma 8, i.e., Eαn
[
T̄ nπn∗

]
= (sn+w∗n)/(n(1− ρ)) = τ∗.

Furthermore, if we can interchange the order of taking limit and expectation on the right-hand side of

(D.32), then

lim
n→∞

1

τ∗
Eαn

[
Ψ̄n
πn∗

]
=

1

τ∗
Eα
[

lim
n→∞

Ψ̄n
πn∗

]
=

1

τ∗

(
r+

∫ τ∗

0

ψ (x∗(s))ds

)
= c∗, (D.33)

where the second equality follows from the interchange of limits in Lemma 13.

The statement of Lemma 5 follows by combining (D.32) and (D.33). The work left is to justify (D.33).

Step 4. Uniform integrability. We now complete the proof by justifying the interchange of limit and

expectation in the first equality in (D.33). Let Θk, k ∈K, denote a generic busy period “generated” by one

unit of product k, namely, Θk is the amount of time it takes to reduce the shortfall level Y n of product k by

one. Due to the facts that (i) the shortfall level process is equivalent to the queue length process under the

exhaustive policy for polling systems, (ii) the exhaustive policy is a special case of the binomial-exhaustive

policy, and (iii) the sum of the idle and setup times can be considered as the switchover times for polling

systems, the following lemma follows directly from Theorem 4 and Proposition 6.1 in Hu et al. (2020b).

Lemma 14 Consider the sequence of stochastic systems under the sequence of BSI policies with base-stock

levels {Bn : n≥ 1} and idle times {Wn : n≥ 1} defined in (C.7). Assume that X̄n(0)
d
= X̃n(∞) for all n≥ 1,

namely, the inventory level process is stationary. Let xe denote the global limit cycle of the fluid model under

the BSI policy with base-stock levels b and idle times w, and ye be the shortfall level process corresponding

to xe. Under Assumption 1, the steady-state shortfall level satisfies E [Y n
k (Ani )`]<∞ for all n≥ 1, and

lim
n→∞

E
[
Ȳ n
k (Āni )`

]
= (ye,k(ai))

` for all `∈N, k, i∈K.

Furthermore, the steady-state busy times satisfy E
[(
V̄ n
k

)`]
<∞ for all n≥ 1 and

lim
n→∞

E
[(
V̄ n
k

)`]
= (ye,k(ak)E [Θk])

`
for all `∈N, k ∈K.

By Assumption 2, the holding and backlog costs satisfy hk(x) =O(xp) and pk(x) =O(xp), for some p > 1.

For the purpose of this proof, it is sufficient to restrict attention to cost functions that are polynomial of
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order p, namely, there exist constants chk and cpk in R+ such that hk(xk) = chk(x+
k )p and pk(xk) = cpk(x−k )p,

k ∈K. The cumulated cost over one stationary cycle defined in (D.30) can be upper bounded by

Ψ̄n = r+
∑
k∈K

∫ T̄n

0

[
chk
(
X̄n
k (s)+

)p
+ cpk

(
X̄n
k (s)−

)p]
ds

≤ r+
∑
k∈K

∫ T̄n

0

[
chk
(
B̄n
k

)p
+ cpk

(
Ȳ n
k (s)

)p]
ds

≤ r+
∑
k∈K

∑
i∈K

∫ Āni+1

Ān
i

[
chk
(
B̄n
k

)p
+ cpk

(
Ȳ n
k (Āni ) + P̄ n

k (V̄ n
i + W̄ n

i + S̄ni+1)
)p]

ds

= r+
∑
k∈K

∑
i∈K

(
V̄ n
i + W̄ n

i + S̄ni+1

) [
chk
(
B̄n
k

)p
+ cpk

(
Ȳ n
k (Āni ) + P̄ n

k (V̄ n
i + W̄ n

i + S̄ni+1)
)p]

= r+
∑
k∈K

∑
i∈K

(
V̄ n
i +wi + S̄ni+1

) [
chk (dbke)p + cpk

(
Ȳ n
k (Āni ) + P̄ n

k (V̄ n
i +wi + S̄ni+1)

)p]
.

(D.34)

In (D.34) above, the first inequality is due to the relationship that Xn
k (t) = Bn

k − Y n
k (t) for all k ∈ K and

t≥ 0. The second inequality is due to the omission of the production process, which decreases the value of

Ȳ n. The second-to-last equality follows from the fact that the time between two consecutive polling epochs,

e.g., Āni and Āni+1, consists of the corresponding production time, idle time, and the subsequent setup time.

Finally, the last equality follows from the translation in (C.7) that Bn := dnbe and Wn := nw.

Based on Assumption 1 and Lemma 14, it follows from standard arguments that each summand on the

right-hand side of (D.34) is UI (see similar derivation in the proof of Theorem 2 in Hu et al. (2020a)). Since

UI is preserved under finite summation, {Ψ̄n : n ≥ 1} is UI. Thus, the first equality in (D.33) follows by

taking the sequence of BSI policies to be {πnBSI,∗ : n≥ 1}. Q.E.D.

D.3. Proof of Lemma 6

Proof: To establish the result, we first prove the following lemma, whose proof follows similar steps as

in the proof of Lemma 5. In particular, Step 1, Step 2, and Step 3 follow identical arguments as those

in the proof of Lemma 5. We now explain how to modify Step 4. First, an analogue of Lemma 14 on the

steady-state shortfall level and busy times holds under Assumption 3 follows again from Theorem 4 and

Proposition 6.1 in Hu et al. (2020b).

Lemma 15 Consider the sequence of stochastic systems under the sequence of BSI policies with base-stock

levels {Bn : n≥ 1} and idle times {Wn : n≥ 1} defined in (C.7). Assume that X̄n(0)
d
= X̃n(∞) for all n≥ 1,

namely, the inventory level process is stationary. Let xe denote the global limit cycle of the fluid model under

the BSI policy with parameters b and idle times w, and ye be the shortfall level corresponding to xe. Under

Assumption 3, the steady-state shortfall level satisfies E
[
Y n
k (Ani )Y n

j (Ani )
]
<∞ for all n≥ 1, and

lim
n→∞

E
[
Ȳ n
k (Āni )Ȳ n

j (Āni )
]

= ye,k(ai)ye,j(ai), for all k, j, i∈K.

Furthermore, the steady-state busy times satisfy E
[(
V̄ n
k

)2]
<∞ for all n≥ 1 and

lim
n→∞

E
[(
V̄ n
k

)2]→ (ye,k(ak)E [Θk])
2
, for all k ∈K.
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With linear holding and backlog costs (i.e., p= 1), the upper bound in (D.34) reduces to

Ψ̄n ≤ r+
∑
k∈K

∑
i∈K

(
V̄ n
i +wi + S̄ni+1

) [
chkdbke+ cpk

(
Ȳ n
k (Āni ) + P̄ n

k (V̄ n
i +wi + S̄ni+1)

)]
. (D.35)

Using Assumption 3 and Lemma (15), we can apply similar procedures as in the proof of Lemma 5 to

conclude that each summand on the right-hand side of (D.35) is UI, and the statement follows. Q.E.D.

Appendix E: More on the Numerical Experiments in Sections 5 and 6

E.1. Fluid Optimal Solutions in Table 2

In this section, we formalize the observation that several systems in Table 2 (e.g., systems 1–4 and systems

5–6) have the same fluid-optimal base-stock levels and costs.

Lemma 16 Let P1 be a fluid optimization problem (2.3) with setup times (s1, ..., sK) ∈ RK+ . Let (b∗,w∗)

denote an optimal solution to P1. Consider another fluid optimization problem P2 that is identical to P1,

except that P2 has setup times (s̃1, ..., s̃K), where (s̃1, ..., s̃K) satisfies 0 ≤
∑

k∈K s̃k −
∑

k∈K sk ≤ w∗. Then

(b∗,w∗−∆) is optimal to P2 for ∆ :=
∑

k∈K s̃k−
∑

k∈K sk.

Proof: Let cP1(b,w) (alternatively, cP2(b,w)) denote the objective value of problem P1 (alternatively,

P2) for a given solution (b,w).

Since 0≤∆≤ w∗, it holds that w∗ −∆≥ 0, which implies that (b∗,w∗ −∆) is a feasible solution to P2.

Suppose for the sake of contradiction that (b∗,w∗−∆) is not optimal to P2, i.e., there exists solution (b′∗,w
′
∗),

b′∗ 6= b∗ or w′∗ 6=w∗, whose objective value satisfies

cP2(b′∗,w
′
∗)< c

P2(b∗,w∗−∆). (E.1)

Define w′′∗ :=w′∗+ ∆≥ 0. Note that (b′∗,w
′′
∗ ) is a feasible solution to P1.

Inspection of the fluid optimization problem (2.3) implies that the setup times and the total idle time

affect the solution only through their sum. Thus, for problem P1 and P2, we have cP1(b,w1) = cP2(b,w2) if

w1 +
∑

k∈K sk =w2 +
∑

k∈K s̃k, i.e., if w1 =w2 + ∆, for some b∈RK , w1,w2 ∈R+. In particular, we have

cP1(b′∗,w
′′
∗ ) = cP2(b′∗,w

′
∗) and cP1(b∗,w∗) = cP2(b∗,w∗−∆) (E.2)

By (E.1) and (E.2), we get that

cP1(b′∗,w
′′
∗ ) = cP2(b′∗,w

′
∗)< c

P2(b∗,w∗−∆) = cP1(b∗,w∗),

which contradicts the optimality of (b∗,w∗) to problem P1. Therefore, (b∗,w∗−∆) is optimal to P2. Q.E.D.

To interpret the fluid optimal solutions for systems 1–4 in Table 2, we can consider the fluid optimization

problem for system 1 as P1 and for systems 2, 3, 4 as P2 in the context of Lemma 16, respectively. Similarly,

to interpret the fluid optimal solutions for systems 5 and 6 in Table 2, we can consider the fluid optimization

problem for system 5 as P1 and for systems 6 as P2.
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E.2. MDP Formulation

In this section, we provide detailed formulation for MDP Idle-Fix and MDP General in Section 6. We use the

relative value iteration method (see, e.g., (Das et al. 1999, Section 2)) with state truncation to solve MDP

Idle-Fix and MDP General. In particular, we consider a two-product system where the inventory level is kept

between −40 and 40. The transition rates and available actions are modified such that the inventory level

does not exceed the boundary. In our setting, if X1 = 40, the action to produce product 1 is not available; if

X1 =−40, the demand rate for product 1 is set to λ1 = 0. Similar treatment is applied to product 2.

E.2.1. MDP Idle-Fix Let G denote the state space, i.e., G = {(X1,X2,Z) ∈ Z × Z × {1,2} : −40 ≤
Xi ≤ 40, i= 1,2}. The action space is A(X1,X2,Z) = {“produce”, “idle + switch”} if Z ∈ {1,2}. For i, j ∈G,

a ∈A(i), let Pij(a) denote the probability of entering state j if action a is taken at state i, and let c(i, j, a)

denote the expected accrual of cost if the state transitions from i to j under action a. The relative value

iteration is summarized as follows:

1. Initiate V 0 = 0, choose some (arbitrary) state x∗ ∈G, specify ε > 0, and set m= 0.

2. For each i∈G, compute V m+1(i) by

V m+1(i) = min
a∈A(i)

{∑
j∈G

Pij(a) [c(i, j, a) +V m(j)]−V m(x∗)

}
. (E.3)

3. If sp(V m+1−V m)< ε, go to step 4. Otherwise increment m by 1 and return to step 2. Here, sp denotes

“span,” which is defined as sp(V ) := maxi∈G V (i)−mini∈G V (i).

4. For each i∈G, retrieve the ε-optimal action in steady state, denoted by aε(i), by selecting

aε(i)∈ arg min
a∈Ai

{∑
j∈G

Pij(a) [c(i, j, a) + vm(j)]− vm(x∗)

}
.

In (E.3), the term
∑

j∈GPij(a)c(i, j, a) is the expected accrual of cost during the sojourn time at state i if

action a is taken. For i= (X1,X2,Z), it can be calculated as follows.

1. If a= “produce,” then

Pij(a) =


λ1

λ1+λ2+µ1
if j = (X1− 1,X2,Z)

λ2

λ1+λ2+µ1
if j = (X1,X2− 1,Z)

µ1

λ1+λ2+µ1
if j = (X1 + 1,X2,Z)

0 otherwise

c(i, j, a) =
1

λ1 +λ2 +µ1

∑
k∈K

[
hk(Xk)

+ + pk(Xk)
−] .

2. If a= “idle + switch,” then

Pij(a) =

{
Pois(n1, λ1(sZc +w∗/2))Pois(n2, λ2(sZc +w∗/2)) if j = (X1−n1,X2−n2,Z

c)

0 otherwise,

where Pois(n,λ) denotes the probability mass function of a Poisson random variable with count n and

mean λ. Using the fact that conditional on count = n, the n (unordered) arrival times are i.i.d. uniform

random variables over the idle and setup time, the expected accrual of cost is given by, for k= 1,2,

ck(i, j, a) :=


1
2
hk(Xk +Xk−nk)(sZc +w∗/2) if Xk−nk ≥ 0

− 1
2
pk(Xk +Xk−nk)(sZc +w∗/2) if Xk ≤ 0

1
2
hkXk

Xk(sZc+w∗/2)

Xk−(Xk−nk)
+ 1

2
pk(nk−Xk)

(nk−Xk)(sZc+w∗/2)

Xk−(Xk−nk)
if Xk ≥ 0,Xk−nk ≤ 0

0 otherwise,
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and c(i, j, a) = c1(i, j, a) + c2(i, j, a).

E.2.2. MDP General Let G denote the state space, i.e., G = {(X1,X2,Z) ∈ Z × Z × {1,2,1I ,2I} :

−40≤Xk ≤ 40, k= 1,2}. The action space is A(X1,X2,Z) = {“produce”, “switch”, “idle”} if Z ∈ {1,2}, and

A(X1,X2,Z) = {“switch”, “idle”} if Z ∈ {1I ,2I}. Similar to the case of MDP Idle-Fix, we can apply the

relative value iteration algorithm, where the cost and transition probability are characterized as follows.

1. If a= “produce,” then

Pij(a) =


λ1

λ1+λ2+µ1
if j = (X1− 1,X2,Z)

λ2

λ1+λ2+µ1
if j = (X1,X2− 1,Z)

µ1

λ1+λ2+µ1
if j = (X1 + 1,X2,Z)

0 otherwise

and c(i, j, a) =
1

λ1 +λ2 +µ1

∑
k=1,2

[
hk(Xk)

+ + pk(Xk)
−] .

2. If a= “switch,” define Zc := 1 if Z ∈ {2,2I}, and Zc := 2 if Z ∈ {1,1I}. Then

Pij(a) =

{
Pois(n1, λ1sZc)Pois(n2, λ2sZc) if j = (X1−n1,X2−n2,Z

c)

0 otherwise.

For k= 1,2, define

ck(i, j, a) :=


1
2
hk(Xk +Xk−nk)sZc if Xk−nk ≥ 0

− 1
2
pk(Xk +Xk−nk)sZc if Xk ≤ 0

1
2
hkXk

XksZc

Xk−(Xk−nk)
sZc + 1

2
pk(nk−Xk)

(nk−Xk)sZc
Xk−(Xk−nk)

if Xk ≥ 0,Xk−nk ≤ 0

0 otherwise.

Then the expected cumulated cost is given by c(i, j, a) = c1(i, j, a) + c2(i, j, a).

3. If a= “idle,” define Zc := 1I if Z ∈ {1,1I}, and Zc := 2I if Z ∈ {2,2I}. Then

Pij(a) =


λ1

λ1+λ2
if j = (X1− 1,X2,Z

c)
λ2

λ1+λ2
if j = (X1,X2− 1,Zc)

0 otherwise

and c(i, j, a) =
1

λ1 +λ2

∑
k=1,2

[
hk(Xk)

+ + pk(Xk)
−] .
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