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• We are interested in estimating the (average) effect of a

binary treatment on a scalar outcome.

• We have data on N units, for T periods.

• We observe

– the treatment, Wit ∈ {0,1},

– the realized outcome Yit,

– time invariant characteristics of the units Xi,

– unit-invariant characteristics of time Zt,

– time and unit specific characteristics Vit
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We observe (in addition to covariates):

Y =


Y11 Y12 Y13 . . . Y1T
Y21 Y22 Y23 . . . Y2T
Y31 Y32 Y33 . . . Y3T

... ... ... . . . ...
YN1 YN2 YN3 . . . YNT

 outcome.

W =


1 1 0 . . . 1
0 0 1 . . . 0
1 0 1 . . . 0
... ... ... . . . ...
1 0 1 . . . 0

 treatment.

• rows are units, columns are time periods. (Important

because some, but not all, methods treat units and time

periods asymmetric)
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In terms of potential outcomes:

Y(0) =


? ? X . . . ?
X X ? . . . X
? X ? . . . X
... ... ... . . . ...
? X ? . . . X

 Y(1) =


X X ? . . . X
? ? X . . . ?
X ? X . . . ?
... ... ... . . . ...
X ? X . . . ?

 .

In order to estimate the average treatment effect for the
treated, (or other average, e.g., overall average effect)

τ =

∑
i,tWit

Yit(1)− Yit(0)


∑
itWit

,

We need to impute the missing potential outcomes in at
least one of Y(0) and Y(1).
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Focus on problem of imputing missing in Y (either Y(0) or

Y(1))

YN×T =


? ? X . . . ?
X X ? . . . X
? X ? . . . X
... ... ... . . . ...
? X ? . . . X



O and M are sets of indices (it) with Yi,t observed and missing,

with cardinalities |O| and |M|. Covariates, time-specific, unit-

specific, time/unit-specific.

• This is a Matrix Completion Problem.
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General set up:

YN×T = LN×T + εN×T

• Key assumption “Matrix Unconfoundedness”:

WN×T ⊥⊥ εN×T

∣∣∣∣ LN×T
(but W may depend on L)

• In addition:

LN×T ≈ UN×RV
>
T×R

well approximated by matrix with rank R low relative to N

and T .
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• Classification of practical problems depending on

– magnitude of T and N ,

– pattern of missing data, fraction of observed data

|O|/(|O|+ |M|) close to zero or one.

• Different structure on L in

– average treatment effect under unconfoundedness lit.

– synthetic control literature

– panel data / DID / fixed effect literature

– machine learning literature
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Classification of Problem I: Magnitude of N and T

Thin Matrix (N large, T small), typical cross-section setting:

YN×T =



? X ?
X ? X
? ? X
X ? X
? ? ?
... ... ...
? ? X


(many units, few time periods)

Fat Matrix (N small, T large), time series setting:

YN×T =

 ? ? X X X . . . ?
X X X X ? . . . X
? X ? X ? . . . X

 (few units, many periods)

Or approx square matrix, N and T comparable magnitude.
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Classification of Problem II: Pattern of Missing Data

Most of econometric causal literature focuses on case with

block of Treated Units / Time Periods

YN×T =



X X X X . . . X
X X X X . . . X
X X X X . . . X
X X X ? . . . ?
X X X ? . . . ?
... ... ... ... . . . ...
X X X ? . . . ?


=

(
YC,pre(0) YC,post(0)
YT,pre(0) ?

)

Easier because it allows for complete-data modeling of

• cond. distr. of YC,post(0) given YC,pre(0) (matching) or

• cond. distr. of YT,pre(0) given YC,pre(0) (synt. control).
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Two important special cases:

Single Treated Unit (Abadie et al Synthetic Control)

YN×T =


X X X . . . X
X X X . . . X
X X X . . . X
... ... ... . . . ...
X X ? . . . ? ← (treated unit)


Single Treated Period (Most of Treatment Effect Lit)

YN×T =



X X X . . . X
X X X . . . X
X X X . . . ?
... ... ... . . . ...
X X X . . . ?

↑
(treated period)
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Other Important Assignment Patterns

Staggered Adoption (e.g., adoption of technology, Athey

and Stern, 1998)

YN×T =



X X X X . . . X (never adopter)
X X X X . . . ? (late adopter)
X X X X . . . ?
X X ? ? . . . ?
X X ? ? . . . ? (medium adopter)
... ... ... ... . . . ...
X ? ? ? . . . ? (early adopter)
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Netflix Problem

• Very very large N (number of individuals),

• Large T (number of movies),

• raises computational issues

• General missing data pattern,

• Fraction of observed data is close to zero, |O| << |M|

YN×T =



? ? ? ? ? X . . . ?
X ? ? ? X ? . . . X
? X ? ? ? ? . . . ?
? ? ? ? ? X . . . ?
X ? ? ? ? ? . . . X
? X ? ? ? ? . . . ?
... ... ... ... ... ... . . . ...
? ? ? ? X ? . . . ?
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Fat Matrix: Vertical Regression

𝑦𝑦1,1 𝑦𝑦1,2
𝑦𝑦2,1 𝑦𝑦2,2
𝑦𝑦3,1 𝑦𝑦3,2

⋯ 𝑦𝑦1,𝑇𝑇−1 𝑦𝑦1,𝑇𝑇
⋯ 𝑦𝑦2,𝑇𝑇−1 𝑦𝑦2,𝑇𝑇
⋯ 𝑦𝑦3,𝑇𝑇−1 𝑦𝑦3,𝑇𝑇

𝑦𝑦𝑁𝑁,1 𝑦𝑦𝑁𝑁,2 ⋯ 𝑦𝑦𝑁𝑁,𝑇𝑇−1 ?

�𝑦𝑦𝑁𝑁,𝑇𝑇 = �
𝑖𝑖>1

�𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖𝑇𝑇

𝑦𝑦𝑁𝑁,𝑡𝑡=𝜔𝜔0 + ∑𝑖𝑖<𝑁𝑁𝜔𝜔𝑖𝑖𝑦𝑦𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑡𝑡

• Outcome: 
• Target unit outcome in period t

• Covariates: 
• Other unit’s outcomes in same period.

• Observation is a time period. 
• What is stable: 

• Patterns across units

• Identification:  
• 𝑌𝑌𝑁𝑁,𝑡𝑡 0 ⊥ 𝑊𝑊𝑁𝑁,𝑡𝑡|𝑌𝑌1,𝑡𝑡, . . ,𝑌𝑌𝑁𝑁−1,𝑡𝑡

• Examples:
• Synthetic control: 𝜔𝜔𝑖𝑖 ≥ 0, ∑𝑖𝑖>1𝜔𝜔𝑖𝑖 = 1
• Doudchenko-Imbens: estimate 𝜔𝜔𝑖𝑖 w/ 

elastic net



Thin Matrix: Horizontal Regression

• Outcome:
• Target time period outcome

• Covariates:
• Other time period outcome for same unit

• Observation is a unit.  
• What is stable:

• Time patterns within a unit 
• Identification: 

• 𝑌𝑌𝑖𝑖,𝑇𝑇 0 ⊥ 𝑊𝑊𝑖𝑖,𝑇𝑇|𝑌𝑌𝑖𝑖,1, . . ,𝑌𝑌𝑖𝑖,𝑇𝑇−1
• Examples:

• Matching, ATE literature: avg. outcomes 
from units with most similar 𝒚𝒚𝑖𝑖,−𝑇𝑇

• With regularization: Chernozhukov et al, 
Athey, Imbens and Wager (2017)

• Closely related to transposed versions of 
Synthetic Controls, Elastic Net

�𝑦𝑦𝑁𝑁,𝑇𝑇 = �
𝑡𝑡<𝑇𝑇

�𝜔𝜔𝑡𝑡𝑦𝑦𝑁𝑁,𝑡𝑡

𝑦𝑦𝑖𝑖,𝑇𝑇=∑𝑡𝑡<𝑇𝑇 𝜔𝜔𝑡𝑡𝑦𝑦𝑖𝑖,𝑡𝑡 + 𝜖𝜖𝑖𝑖

𝑦𝑦1,1 𝑦𝑦1,2 𝑦𝑦1,𝑇𝑇
𝑦𝑦2,1 𝑦𝑦2,2 𝑦𝑦2,𝑇𝑇
𝑦𝑦3,1 𝑦𝑦3,2 𝑦𝑦3,𝑇𝑇
⋮
⋮

⋮
⋮

⋮
⋮

𝑦𝑦𝑁𝑁,1 𝑦𝑦𝑁𝑁,2 ?



General Matrix: Matrix Regression (Panel)

• Panel data regression.  Exploit additive structure in unit and 
time effects.

• Identification: 𝑌𝑌𝑖𝑖,𝑡𝑡(0) ⊥ 𝑊𝑊𝑖𝑖,𝑡𝑡|𝛾𝛾𝑖𝑖 ,𝛿𝛿𝑡𝑡
• Matrix formulation of identification: 𝑌𝑌𝑁𝑁×𝑇𝑇(0) ⊥ 𝑊𝑊𝑁𝑁×𝑇𝑇|𝐿𝐿𝑁𝑁×𝑇𝑇

�𝑦𝑦𝑁𝑁𝑇𝑇 = �𝛾𝛾𝑁𝑁 + 𝛿𝛿𝑇𝑇

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡
𝑦𝑦1,1 ⋯ 𝑦𝑦1,𝑇𝑇
𝑦𝑦2,1 … 𝑦𝑦2,𝑇𝑇
𝑦𝑦3,1 ⋯ 𝑦𝑦3,𝑇𝑇
⋮
⋮

⋮
⋮

⋮
⋮

𝑦𝑦𝑁𝑁,1 ⋯ ?

𝑌𝑌𝑁𝑁×𝑇𝑇 = 𝐿𝐿𝑁𝑁×𝑇𝑇 + 𝜖𝜖𝑁𝑁×𝑇𝑇 =
𝛾𝛾1 1
⋮ ⋮
𝛾𝛾𝑁𝑁 1

1 ⋯ 1
𝛿𝛿1 ⋯ 𝛿𝛿𝑇𝑇

+ 𝜖𝜖𝑁𝑁×𝑇𝑇



II. How/why do we regularize:

Potentially many parameters when (i) vertical regression on

thin matrix, (ii) horizontal regression on fat matrix, iii) ma-

trix is approx square:

“Regularization theory was one of the first signs of

the existence of intelligent inference.” (Vapnik, 1999,

p. 9)

• Need regularization to avoid overfitting.

• How you do the regularization is important for substan-

tive and computational reasons: lasso/elastic-net/ridge are

better than best subset in simple regression setting.
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Literature:

Regularize → No Regular. Best `1/LASSO, `2 et al
Subset

Regression
↓

Horizontal earlier causal – Chernozhukov et al
effect lit. Athey et al

Vertical Abadie-Diam., – Doudch.-Imb.
Hainmueller & Abadie-L’Hour

Matrix two-way Bai (2003) Current Paper
fixed effect Xu (2017)
literature
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Econometric Literature I: Treatment Effect / Matching-

Regression

• Thin matrix (many units, few periods), single treated period

(period T ).

Strategy: Use controls to regress Yi,T on lagged outcomes

Yi,1, . . . , Yi,T−1. NC obs, T − 1 regressors.

• Does not work well if Y is fat (few units, many periods).

• Key identifying assumption: YiT (0) ⊥⊥WiT |Yi1, . . . , YiT−1
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Econometric Literature II: Abadie-Diamond-Hainmueller

Synthetic Control Literature

• Fat matrix, single treated unit (unit N), treatment starts

in period T0.

Strategy: Use pretreatment periods to regress YN,t on con-

temporaneous outcomes Y1,t, . . . , YN−1,t. T0 − 1 obs, N re-

gressors. Weights (regression coefficients) are nonnegative

and sum to one, no intercept.

• Does not work well if matrix is thin (many units).

• Key identifying assumption: YNt(0) ⊥⊥WNt|Y1t, . . . , YN−1t
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Econometric Literature III: Doudchenko-Imbens

• Fat matrix or similar N , T , single treated unit (unit N),

treatment starts in period T0.

Strategy: Use pretreatment periods to regress YN,t on con-

temporaneous outcomes Y1,t, . . . , YN−1,t. using elastic net

regularization. T0 − 1 obs, N regressors.

• Allows for negative weights, weights summing to some-

thing other than one, non-zero intercept, typically requires

regularization.
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Econometric Literature IV: Transposed Abadie-Diamond-

Hainmueller or Doudchenko-Imbens (Reverse role of time

and units compared to ADH or DI)

• fat matrix, single treated unit (N), treatment in period T .

Strategy: Use control units to regress YiT on lagged out-

comes Yi1, . . . , YiT−1. using elastic net regularization. NC
obs, T − 1 regressors.

• Allows for negative weights, weights summing to something

other than one, non-zero intercept.

Similar to regression estimator for matching setting,

with regularization.
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Econometric Literature V: Fixed Effect Panel Data Lit-

erature / Difference-In-Differences

• T and N similar, general pattern for treatment assignment.

Model:

Yit = αi + γt + εi,t

• Symmetric in role of units and time periods.

• Suppose T = 2, N = 2, W2,2 = 1, Wi,t = 0 if (i, t) 6= (2,2),

then we have a classic DID setting, leading to imputed value

Ŷ2,2 = Y1,2 +

Y2,1 − Y1,1
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Questions: What to do if we are unsure about thin/fat/square,

with staggered adoption or general assignment mechanism?

• We generalize interactive fixed effects model (Bai, 2003,

2009; Xu 2017, Gobillon and Magnac, 2013; Kim and

Oka, 2014), allowing for large rank L.

• We propose a new estimator with novel regularization:

– can deal with staggered/general missing data patterns

– Computationally feasible bec. convex optimization probl.

– Reduces to matching under assump. in thin case.

– Reduces to synt. control under assump. in fat case.
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Xi is P -vector, Zt is Q vector.

Model (generalized version of Xu, 2017):

Yit = Lit +
P∑
p=1

Q∑
q=1

XipHpqZqt + γi + δt + Vitβ + εit

Unobserved: Lit, γi, δt, Hpq, β, εit.
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• We do not necessarily need the fixed effects γi and δt, these

can be subsumed into L.

If Lit = γi + δt, then L is a rank 2 matrix:

L =
(
γN×1 ιN×1

) (
ιT×1 δT×1

)>

=


γ1 1
γ2 1
... ...
γN 1


(

1 1 . . . 1
δ1 δ . . . δT

)

• It may be convenient to include the fixed effects given that

we regularize L.
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Too many parameters (especially N × T matrix L), so we

need regularization:

We shrink L and H towards zero.

For H we use Lasso-type element-wise `1 norm: defined as

‖H‖1,e =
∑P
p=1

∑Q
q=1 |Hpq|.
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How do we regularize LN×T?

In linear regression with many regressors,

Yi =
K∑
l=1

βkXik + εi,

we often regularize by adding a penalty term λ‖β‖ where

‖β‖ = ‖β‖0 =
K∑
k=1

1|βk|6=0 best subset selection

‖β‖ = ‖β‖1 =
K∑
k=1

|βk| LASSO

‖β‖ = ‖β‖22 =
K∑
k=1

|βk|2 ridge
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Matrix norms for N × T Matrix LN×T

LN×T = SN×NΣN×TRT×T (singular value decomposition)

S, R unitary, Σ is rectang. diagonal with entries σi(L) that
are the singular values. Rank(L) is # of non-zero σi(L).

‖L‖2F =
∑
i,t

|Lit|2 =
min(N,T )∑
j=1

σ2
i (L) (Frobenius, like ridge)

‖L‖∗ =
min(N,T )∑
j=1

σi(L) (nuclear norm, like LASSO)

‖L‖R = rank(L) =
min(N,T )∑
j=1

1σi(L)>0 (Rank, like subset)
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Xu (2017) focuses on case with block assignment,

Y =

(
YC,pre YC,post
YT,pre ?

)
Following Bai (2009), Xu fixes the rank R(L) so we can write

L as a matrix with an R-factor structure:

L = UV> =

(
UC
UT

)(
Vpre
Vpost

)>
where

U is N ×R, V is T ×R
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Xu (2017) two-step method:

First, use all controls to estimate UC, Vpre, Vpost:

min
UC ,Vpre,Vpost

∥∥∥∥∥∥YC −UC

(
Vpre
Vpost

)>∥∥∥∥∥∥
Second, use the treated units in pre period to estimate UT

given V̂pre:

min
UT

∥∥∥YT,pre −UT V̂
>
pre

∥∥∥
Choose rank of L through crossvalidation (equivalent to reg-

ularization through rank).

28



Two Issues

• Xu’s approach does not work with staggered adoption (there

may be only few units who never adopt), or general assign-

ment pattern.

• Xu’s method is not efficient because it does not use the

YT,pre data to estimate V.
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Modified Xu (2017) method:

min
L

1

|O|
∑

(i,t)∈O
(Yit − Lit)2 + λL‖L‖R

• More efficient, uses all data.

• Works with staggered adoption and general missing data

pattern.

• Computationally intractable with large N and T because of

non-convexity of objective function (like best subset selection

in regression).

30



Our proposed method: regularize using using nuclear norm:

L̂ = min
L

1

|O|
∑

(i,t)∈O
(Yit − Lit)2 + λL‖L‖∗

• The nuclear norm ‖·‖∗ generally leads to a low-rank solution

for L, the way LASSO leads to selection of regressors.

• Problem is convex, so fast solutions available.
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Estimation: L̂ is obtained via the following procedure∗:

(1) Initialize L̂1 by 0N×T .

(2) For k = 1,2, . . . repeat till convergence (O is where we
observe Y):

L̂k+1 = Shrinkλ
(
PO(Y) + P⊥O (L̂k)

)
Here PO, P

⊥
O , and Shrinkλ are matrix operators on RN×T . For any AN×T ,

PO(A) is equal to A on O and is equal to 0 outside of O. P⊥O (A) is the
opposite; it is equal to 0 on O and is equal to A outside of O.

For SVD A = SΣR′ with Σ = diag(σ1, . . . σmin(N,T )),

Shrinkλ(A) = Sdiag(σ1 − λ, . . . , σ` − λ, 0, . . . ,0︸ ︷︷ ︸
min(N,T )−`

)R′ .

where σ` is the smallest singular value of A that is larger than λ.

∗More details in Mazumder, Hastie, and Tibshirani (2010)
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General Case: We estimate H, L, δ, γ, and β as

min
H,L,δ,γ


1

|O|

∑
(i,t)∈O

Yit − Lit − ∑
1≤p≤P
1≤q≤Q

XipHpqZqt − γi − δt − Vitβ


2

+ λL‖L‖∗ + λH‖H‖1,e



• The same estimation procedure as before applies here with

an additional Shrink operator for H.

• We choose λL and λH through crossvalidation.
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Additional Generalizations I:

• Allow for propensity score weighting to focus on fit where

it matters:

Model propensity score Eit = pr(Wit = 1|Xi, Zt, Vit), E is N×T
matrix with typical element Eit

Possibly using matrix completion:

min
E

1

NT

∑
i,t

(Wit − Eit)2 + λL‖E‖∗

and then

min
L

1

|O|
∑

(i,t)∈O

Êit
1− Êit

(Yit − Lit)2 + λL‖L‖∗
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Additional Generalizations II:

• Take account of of time series correlation in εit = Yit − Lit

Modify objective function from logarithm of Gaussian likeli-

hood based on independence to have autoregressive struc-

ture.
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Adaptive Properties of Matrix Regression I

Suppose N is large, T is small, Wit = 0 if t < T (ATE under

unconf setting), and the data-generating-process is

YiT = µ+
T−1∑
t=1

αtYit + εiT , εiT ⊥⊥ (Yi1, . . . , Yi,T−1)

Then matrix regression ≈ horizontal regression, and γi = 0,

δ = (0,0, . . . , µ), and rank T − 1 matrix

L =



Y11 Y12 . . . Y1,T−1 µ+
∑T−1
t=1 αtY1t

Y21 Y22 . . . Y2,T−1 µ+
∑T−1
t=1 αtY2t

Y31 Y32 . . . Y3,T−1 µ+
∑T−1
t=1 αtY3t

... ... . . . ... ...

YN1 YN2 . . . YN,T−1 µ+
∑T−1
t=1 αtYNt

 (rank T−1)
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Adaptive Properties of Matrix Regression II

Suppose N is small, T is large, single treated unit, (synthetic

control setting) and the data-generating-process is

YNt = µ+
N−1∑
i=1

αiYit + εNt, εNt ⊥⊥ (Y1t, . . . , YN−1,t)

Then matrix regression ≈ vertical regression, and γi = (0,0, . . . , µ),

δ = 0, and rank N − 1 matrix

L =



Y11 Y12 . . . Y1T
Y21 Y22 . . . Y2T
Y31 Y32 . . . Y3T

... ... . . . ...
YN−1,1 YN−1,2 . . . YN−1,T

µ+
∑N−1
i=1 ωiYi1 µ+

∑N−1
i=1 ωiYi2 . . . µ+

∑N−1
i=1 ωiYiT
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Results I: If there are no covariates (just L), O is sufficiently
random, and εit = Yit − Lit are iid with variance σ2.

Recall ‖Y‖F =
√∑

i,t Y
2
it and ‖Y‖∞ = maxi,t |Yit|.

Let Y∗ be the matrix including all the missing values; e.g.,
Y(0). Our estimate Ŷ for Y∗ is L̂.

The estimated matrix Ŷ is close to Y∗ in the following sense∗:

∥∥∥Ŷ −Y∗
∥∥∥
F

‖Y∗‖F
≤ C max

(
σ,
‖Y∗‖∞
‖Y∗‖F

)
rank(L)(N + T ) ln(N + T )

|O|
.

Often the number of observed entries |O| is of order N × T
so if rank(L)� min(N,T ) and ‖Y∗‖∞/‖Y∗‖F <∞, as N + T
grows, the error goes to 0.
∗Adapting the analysis of Negahban and Wainwright (2012)
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Results II

To get confidence interval for Yit(1− Yit(0) (for treated unit

with Wit = 1), we need confidence interval for Lit and dis-

tributional assumption on εit = Yit(0) − Lit (e.g., normal,

N(0, σ2)).

• To estimate Lit consistently, and have distributional results,

we need N and T to be large (even when rank(L) = 1).

• We assume LN×T is a rank R matrix, R fixed as N , T

increase. (Can probably be relaxed to let R increase slowly.)
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Large sample properties of L̂it, following Bai (2003). De-

compose L as a rank R matrix:

LN×T = UN×RV
′
T×R

Define

ΣU =
1

N
U>U Ωi = U>i Σ−1

U σ2Σ−1
U Ui

ΣV =
1

T
V>V Ψt = V>t Σ−1

V σ2Σ−1
V Vt

Then√Ωi

N
+

Ψt

T

−1 (
L̂it − Lit

)
d−→ N (0,1)
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Illustrations

• To assess root-mean-squared-error, not to get point esti-
mate. We take a complete matrix Y, drop some entries and
compare imputed to actual values. We compare five estima-
tors

• DID

• SC-ADH (Abadie-Diamond-Hainmueller)

• EN (Elastic Net, Doudchenko-Imbens)

• EN-T (Elastic Net Transposed, Doudchenko-Imbens)

• MC-NNM (Matrix Completion, Nuclear-Norm Min)
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Illustration I California Smoking Example

Take Abadie-Diamond-Hainmueller California smoking data.

Consider two settings:

• Case 1: Simultaneous adoption
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Illustration I California Smoking Example

Take Abadie-Diamond-Hainmueller California smoking data.

Consider two settings:

• Case 2: Staggered adoption

We report average RMSE for different ratios T0/T .
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Illustration I California Smoking Example (N = 38, T = 31)

Simultaneous adoption, Nt = 8 Staggered adoption, Nt = 35
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Illustrations II Stock Market Data

Daily returns on ≈ 2400 stocks, for ≈ 3000 days. We pick N

stocks at random, for first T periods. This is our sample.

We then pick bN/2c stocks at random from the sample, con-

sider the simultaneous adoption case with T0 in {b0.25T c, b0.75T c},
impute the missing data and compare to actual data.

We repeat this 5 times for two pairs of (N,T ): (N,T ) =

(1000,5) (thin) and (N,T ) = (5,1000) (fat).
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Illustrations II Stock Market Data

Thin: (N,T ) = (1000,5) Fat: (N,T ) = (5,1000)
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