Using Expected Utility Theory

A few things to remember about expected utility representations:

- Let $v:L(X)\to\mathbb{R}$ represent a preference relation over lotteries
 - If v has a VN-M representation, i.e., if $\exists u$ s.t. $v(p) = \sum p_i u(x_i)$, then v is linear in probabilities.
 - What does that mean?

$$\alpha v(p) + (1 - \alpha) v(q) =$$

$$\alpha \sum_{i} p_{i} u(x_{i}) + (1 - \alpha) \sum_{i} q_{i} u(x_{i})$$

$$= \sum_{i} (\alpha p_{i} + (1 - \alpha) q_{i}) u(x_{i})$$

$$= v(\alpha p + (1 - \alpha) q)$$

- Utility for money/bundles is NOT linear

$$u(\alpha x_1 + (1 - \alpha) x_2) \neq \alpha u(x_1) + (1 - \alpha) u(x_2)$$

- Fact 1: any v that represents a preference relation over lotteries is ordinal, and preserved by arbitrary monotone transformations:
 - * v represents **R** if and only if $g \circ v$ represents **R**.
 - * ex: v^2 , $\ln(v)$

- Fact 2: if u is a VN-M utility function representing \mathbf{R} , so is au + b, a > 0.
 - * VN-M utility function is cardinal: scaling matters.
 - * But, it is unique up to positive linear transformation
 - * Note: this is not the same as assuming that utility is quasi-linear.
- You need to understand these two facts! If not, review until you do!
- Preferences for money and risk aversion
 - Move towards $X = \mathbb{R}$, consider gambles over \$
 - * non-linearity of u in $\$ \Rightarrow$ risk preferences
 - * curvature of the utility function, and thus attitudes towards gambles, can change with your wealth
- Certainty Equivalence and Risk
 - Continuous density (p(x))

* if
$$X = \mathbb{R}$$
, $p(x) = \{p(x) : \mathbb{R} \to \mathbb{R}_+ \text{ such that } \int p(x) dx = 1\}$

*
$$E_{p}[x] = \int x p(x) dx$$
 (analogous to $\sum x_{i} p(x_{i})$ in discrete function)

$$* E_p[u \mid x] = \int u(x) p(x) dx$$

$$-u\left(E_{p}\left[x\right]\right) \neq E_{p}\left[u\left(x\right)\right]$$
generalization of $u\left(a+b\right) \neq u\left(a\right) + u\left(b\right)$

* if
$$u$$
 is concave, $\underbrace{u\left(\frac{1}{2}x_1 + \frac{1}{2}x_2\right)}_{\text{for sure}} > \underbrace{\frac{1}{2}u\left(x_1\right) + \frac{1}{2}u\left(x_2\right)}_{\text{gamble}}$

- Formalize Graphical Logic:
 - * Risk Averse:

$$u\left(E_{p}\left(x\right)\right) \geq E_{p}\left[u\left(x\right)\right] \tag{**}$$

* Definition: u(x) is concave on X if, for all $\alpha \in [0,1]$, and all $x, y \in X$,

$$u(\alpha x + (1 - \alpha)y) \ge \alpha u(x) + (1 - \alpha)u(y).$$

"utility of convex combo better than convex combo of utility."

- * Jensen's Inequality -(**) holds for all $p(x) \Leftrightarrow u$ is concave
- Define Certainty Equivalent (CE)

$$u(CE(p)) = \int u(x) p(x) dx$$

- * Risk Averse: $CE(p) < E_p[x]$ certainty equivalent is less than expected value of gamble
- Simple Insurance Problems
 - * $CE(p) < E_p[x]$ implies: gains from trade between a risk-neutral agent and a risk-averse agent.
 - * Consider an agent subject to a potential loss, so that $E_p[x] < 0$.
 - * Insurance company offers premium at price π , satisfying

$$u(-\pi) \ge E_p \left[u \left(x \right) \right].$$

* Consumer is better off, and insurance company makes a profit if

$$\pi \geq -E_p[x]$$
.

- * If the insurance market is perfectly competitive, $\pi=-E_p\left[x\right]$: the price is equal to the expected loss, and we say that insurance is "actuarially fair."
- * A monopolist insurance company offers $\pi=-CE\left(p\right).$