Consumer Surplus

- Welfare changes as a result of price changes
 - Fundamental policy question
 - What is the effect of a tax or a subsidy?
 - What is the effect of a change in relative prices?
 - What is the cost of monopoly pricing?
 - What is the welfare gain from innovation?
- Equivalent and compensating variation
 - Consumer's income is fixed at Y, prices change from \mathbf{p}^O to \mathbf{p}^N .
 - * Let $\overline{u}^O = V(\mathbf{p}^O, Y)$; let $\overline{u}^N = V(\mathbf{p}^N, Y)$.
 - * Note: $E\left(\mathbf{p}^{O}; \overline{u}^{O}\right) = E\left(\mathbf{p}^{N}; \overline{u}^{N}\right) = Y$ by assumption that income is fixed.
 - How much would the consumer need to be paid to make her as well off as after the price change? Equivalent variation:

$$E\left(\mathbf{p}^{O},\overline{u}^{N}\right)-E\left(\mathbf{p}^{O};\overline{u}^{O}\right)$$

- How much must the consumer be paid after the price change, to compensate her for it? Compensating variation:

$$E\left(\mathbf{p}^{N},\overline{u}^{N}\right)-E\left(\mathbf{p}^{N};\overline{u}^{O}\right)$$

– More generally: how much money would it take to compensate the consumer for a change in prices, while keeping her on an arbitrary indifference curve?

$$E\left(\mathbf{p}^{N},\overline{u}\right)-E\left(\mathbf{p}^{O};\overline{u}\right)$$

- Ambiguity: which \overline{u} to use? (Before or after?)
 - * \overline{u}^O answers: Suppose I was at old prices and then prices increased. How much would I need to be compensated to stay on same indiff. curve?
 - * \overline{u}^N answers: How much more would I have had to spend yesterday, to be as well off as I am today?
 - * Each answers different question! Each valid.
 - * Since $E\left(\mathbf{p}^{O}; \overline{u}^{O}\right) = E\left(\mathbf{p}^{N}; \overline{u}^{N}\right)$, using \overline{u}^{O} gives negative of compensating variation, while using \overline{u}^{N} gives negative of equivalent variation.
- Formal approach: The case where only one price changes.
 - * Use Fund Theorem of Calculus:

$$E\left(\mathbf{p}^{N}, \overline{u}\right) - E\left(\mathbf{p}^{O}, \overline{u}\right) = \int_{p_{1}^{O}}^{p_{1}^{N}} h^{1}(p_{1}, \mathbf{p}_{-1}; \overline{u}) dp_{1}$$

- * Problem: h^1 is not observable. $D^1(\mathbf{p}, Y)$ is observable.
- * Notice: $h^1(\mathbf{p}^O; \overline{u}^O) = D^1(\mathbf{p}^O, Y); h^1(\mathbf{p}^N; \overline{u}^N) = D^1(\mathbf{p}^N, Y).$

* Then, area "beside" Marhallian demand is a good approximation to change in consumer surplus.

- The Case Where Many Prices Change: Price Indices
 - Motivation
 - * Simple question: am I better off living in Palo Alto or Boston?
 - · The "price" of biking over mountains to the beach, January jogging, good Mexican food, and outdoor swimming pools and hottubs is very high in Boston.
 - The "price" of not owning a car, getting to the airport, and accessing more than one or two major universities is very high in Palo Alto.
 - · Where am I better off?
 - \cdot Key issue: I consume very different bundles in each place!
 - * Measuring Inflation and Redistribution
 - · Social Security, welfare, union contracts indexed to a public measure of inflation

- · How much more money does a consumer need to be as well off today, as she was yesterday?
- · Problems: As prices change, consumers make different choices. New goods enter the market.
- · Change in retailing practices: superstores, discount stores, and the Internet.
- · Major policy debate; major academic debate.

• Price Indices

- BLS- determined prices of market baskets
- Laspeyres
- v. Paasche, others
- A price index:

$$\frac{\mathbf{p}^N \cdot \mathbf{w}}{\mathbf{p}^O \cdot \mathbf{w}}$$

- Question: What are the weights?
 - * Laspeyres $\mathbf{w} = \mathbf{x}^O$ weight prices by what people <u>were</u> buying at <u>old</u> prices
 - * Paasche $\mathbf{w} = \mathbf{x}^N$ weight prices by what people <u>are</u> buying at <u>new</u> prices
 - * Ideal price index:

$$\frac{E\left(\mathbf{p}^{N},\overline{u}\right)}{E\left(\mathbf{p}^{O},\overline{u}\right)}$$

- · This is nice idea, but hard to observe!
- · And, what \overline{u} to use?

* Take \overline{u}^O . Then:

$$\frac{E\left(\mathbf{p}^{N}, \overline{u}^{O}\right)}{E\left(\mathbf{p}^{O}, \overline{u}^{O}\right)} = \frac{\sum p_{i}^{N} h^{i}\left(\mathbf{p}^{N}, \overline{u}^{O}\right)}{\sum p_{i}^{O} h^{i}\left(\mathbf{p}^{O}, \overline{u}^{O}\right)} \neq \frac{\sum p_{i}^{N} x_{i}^{O}}{\sum p_{i}^{O} x_{i}^{O}}$$

"Substitution bias"

$$\sum p_i^N x_i^O > E\left(\mathbf{p}^N, \overline{u}^N\right)$$

$$\frac{\sum p_i^N \ h^i \left(\mathbf{p}^N, \overline{u}^O\right)}{\sum p_i^O \ h^i \left(\mathbf{p}^O, \overline{u}^O\right)} < \frac{\sum p_i^N \ x_i^O}{\sum p_i^O \ x_i^O}$$

If I get a Laspeyres Price Index of 1, I wouldn't have to spend as much to be equally well-off.

* "Promotional Pricing" worsens substitution bias!

• Other biases:

- "New good" bias- ex. celluar phone on market for 5-10 years before BLS updates market. Index completely missed initial price drop.
- "Outlet" bias more and more peole buying at discount stores over time.
- Retail stuff goes on sale!
- "Everyday low price". v. "High and Low" grocery stores.