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A Preliminaries

In the main text, we studied the problem with outcome mapping ψ(a) given by:

ψ(a) := ψ0 + µa+ σW (a),

whereW (·) is the Wiener process over R with µ ∈ R and ψ0, σ ∈ R+. For conciseness,

the results in the online appendix are stated in terms of the standard Brownian motion

with drift µ, scale σ and initial value X(0) = 0 given by X(a) := µa + σW (a). We

denote the set of all paths of X(·) by X . Note that because ψ(a) = X(a) + ψ0 all of

the results about the random variables work equally well as long as all of them are

scaled up by ψ0. This means the status quo X(0) = 0 maps to ψ(0) = ψ0, Sender’s

ideal point 0 maps to −ψ0 and Sender’s ideal point b maps to b − ψ0. Doing this

transformation back in our variables, the desired results can be obtained.

Our analysis uses a variety of stochastic process that are related to Brownian

motion. First is the Brownian bridge, which is the Brownian motion with known

terminal action and outcome (q, b): B(a, b, q) := {X(a) | X(q) = b} for b ∈ R and

q ∈ R+. Second is the Brownian meander, which is the Brownian motion conditioned

stay above 0 over interval [0, q]: M(a, q) := {X(a) | X(a′) ≥ 0 ∀a′ ∈ [0, q]}.
Two main random variables we are interested in are: (i) First hitting action of

x ∈ R: τ(x) := inf{a ∈ [0, q] | ψ(a) = x}, and (ii) Infimum over the interval [0, q]:
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ι(q) := inf{ψ(a) | a ∈ [0, q]}.1, 2

We are also interested in the compound of the two random variables given by

τ(ι(q)), more precisely: τ(ι(q)) := inf{a ∈ [0, q] | X(a) ≤ X(a′) ∀a′ ∈ [0, q]}. First

hitting action (time) of the minimum over [0, q] τι(q) := τ(ι(q)).3 Finally, the maximal

decrease in ψ(·) over [q1, q2] ⊆ [0, q]: δ(q1, q2). Formally, δ(q1, q2) = inf{X(q2) −
X(q1) | a ∈ [q1, q2]}. Note that this is equivalent to ι(q2 − q1).

B Results used in the Main Proofs

The statements here are for X(·) as the underlying process. The first-point strategy

m∗(ψ) is adapted to this setting as by shifting down by adding −ψ0.

m∗(X) =

τ(−x) if τ(−x) ≤ q

τι(q) if ι(q) > −x
.

By definition ofm∗(X), the eventm∗(X) = r∗ is given by the set of paths {X(·) ∈ X |
τ(−x) = r∗}∪{X(·) ∈ X | τι(q) = r∗, ι(q) > −x}.Note that, when going from ψ(0) to

X(0), b is mapped to a negative number b− ψ0. We frequently use the arguments of

τ(·) by negative variables e.g.−x corresponding to b− ψ0. Thus, statements such as

increasing in −x translate to increasing in b. Finally, we use ϕ(·) and Φ(·) to denote

the standard normal probability density function and cumulative density function,

respectively.

Supporting Results for Lemma 4.

Lemma B.1 limr∗→0+ P(τ(−x) ∈ dr∗ | m∗(X) = r∗) = 0 ∀x, r∗ ∈ R+.

Proof. We will show the sufficient result that the likelihood ratio of τ(−x) and τι(q)
converges to 0. In equation (C.10), we provide the closed expressions for P(τ(−x) ∈
1Note that inf{a ∈ [0, q] | X(a) = x} = inf{a ∈ [0, q] | ψ(a) − ψ0 = x} = inf{a ∈ [0, q] | ψ(a) =
x+ ψ0}. Thus, τ(x) maps to τ(x− ψ0) when changing from X(·) to ψ(·). Similarly, ι(q) maps to
ι(q)+ψ0 when changing from X(·) to ψ(·). We have that: inf{X(a) | a ∈ [0, q]} = inf{ψ(a)+ψ(0) |
a ∈ [0, q]}.

2In our model the domain of the Brownian motion are actions, but the canonical usage has the
domain as the time. Thus, this random variable is frequently referred as the first hitting time.

3Analogously, τ(ι(q)) maps to τ(ι(q) + ψ0) when changing from X(·) to ψ(·).
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dr∗ | m∗(X) = r∗) and P(τι(q) ∈ dr∗, ι(q) > −x | m∗(X) = r∗). Using equation

(C.10), we can state the likelihood ratio as:

lim
r∗→0+

P(τ(−x) ∈ dr∗ | m∗(X) = r∗)

P(τι(q) ∈ dr∗ | m∗(X) = r∗)
= lim

r∗→0

x

σr∗
√
r∗
ϕ
(

−x−µr∗

σ
√
r∗

)∫
0

−x

−2z

σ2r∗
√
r∗
ϕ

(
z − µr∗

σ
√
r∗

) µ

σ
Φ
(

µ(q−r∗)
σ
√
q−r∗

)
+
ϕ
(

−µ(q−r∗)
σ
√
q−r∗

)
√
q − r∗

 dz

.

Taking the constant out from the integral, the limit can be stated as:

lim
r∗→0+

x
σr∗

√
r∗
ϕ

(
−x−µr∗

σ
√
r∗

)
(

µ
σΦ

(
µ(q−r∗)
σ
√
q−r∗

)
+

ϕ

(
−µ(q−r∗)

σ
√

q−r∗

)
√
q−r∗

)∫ 0

−x
−2z

σ2r∗
√
r∗
ϕ
(

z−µr∗

σ
√
r∗

)
dz

.

We can rewrite the limit as the product of two expressions, given that an unambiguous

limit exists for both expressions:

lim
r∗→0+

1

µ
σΦ
(

µ(q−r∗)
σ
√
q−r∗

)
+
ϕ
(

−µ(q−r∗)
σ
√
q−r∗

)
√
q − r∗

lim
r∗→0+

x
σr∗

√
r∗
ϕ
(

−x−µr∗

σ
√
r∗

)∫
0

−x
−2z

σ2r∗
√
r∗
ϕ
(

z−µr∗

σ
√
r∗

)
dz

. (B.1)

We calculate the integral in the second limit term explicitly as:

∫ 0

−x

−2z

σ2r∗
√
r∗
ϕ

(
z − µr∗

σ
√
r∗

)
dz =

2µ

σ

(
Φ

(
µ
√
r∗

σ

)
− Φ

(
µr∗ + x

σ
√
r∗

))
+2

ϕ
(
µ
√
r∗

σ

)
− ϕ

(
µr∗+x
σ
√
r∗

)
√
r∗

.

(B.2)

Thus, the limit of interest can be written using (B.1) and (B.2):

lim
r∗→0+

1

µ
σΦ
(

µ(q−r∗)
σ
√
q−r∗

)
+
ϕ
(

−µ(q−r∗)
σ
√
q−r∗

)
√
q − r∗

lim
r∗→0+

x
σr∗

√
r∗
ϕ
(

−x−µr∗

σ
√
r∗

)
2µ
σ

(
Φ
(

µ
√
r∗

σ

)
− Φ

(
µr∗+x

σ
√
r∗

))
+ 2

ϕ
(

µ
√
r∗

σ

)
− ϕ

(
µr∗+x

σ
√
r∗

)
√
r∗

.

The limit of the first term exists, and given by:

lim
r∗→0+

1

µ
σΦ
(

µ(q−r∗)
σ
√
q−r∗

)
+
ϕ
(

−µ(q−r∗)
σ
√
q−r∗

)
√
q − r∗

=
1

µ
σΦ
(

µ
√
q

σ

)
+
ϕ
(

−µ
√
q

σ

)
√
q

.
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For the second expression, we distribute the limit over the the expression:

limr∗→0+
x

σr∗
√
r∗
ϕ
(

−x−µr∗

σ
√
r∗

)
limr∗→0+

2µ
σ

(
Φ
(

µ
√
r∗

σ

)
− Φ

(
µr∗+x

σ
√
r∗

))
+ limr∗→0+ 2

ϕ
(

µ
√
r∗

σ

)
− ϕ

(
µr∗+x

σ
√
r∗

)
√
r∗

. (B.3)

Focusing on the limit on the numerator of equation (B.3):

lim
r∗→0+

x

σr∗
√
r∗
ϕ

(
−x− µr∗

σ
√
r∗

)
=

x

σ
√
2π

lim
r∗→0+

√
exp(− (−µr∗−x)2

σ2r∗
)

r∗3

=
x

σ
√
2π

lim
r∗→0+

1

exp
(

(−µr∗−x)2
σ2r∗

)
(r∗)3

= 0.

The first line follows from taking the constants out. We take the square of the term

in the second line for a more manageable expression. The final limit follows from

taking the limit to the denominator and repeatedly applying the L’Hopital rule for

limits until the r∗3 term disappears.

The limit for first term in the denominator of equation (B.3) is given by:

lim
r∗→0+

2µ

σ

(
Φ

(
2µ

√
r∗

σ

)
− Φ

(
µr∗ + x

σ
√
r∗

))
=

2µ

σ

(
lim

r∗→0+
Φ

(
µ
√
r∗

σ

)
− lim

r∗→0
Φ

(
µ

σ

√
r∗ +

x

σ
√
r∗

))
=

2µ

σ
(0− 1) = −2µ

σ
.

By definition we have limr∗→0+ Φ
(
µ
√
r∗

σ

)
= 0 and limr∗→0Φ

(
µ
σ

√
r∗ + x

σ
√
r∗

)
= 1.

The second term in the denominator for equation (B.3) has a limit given by:

lim
r∗→0+

2
ϕ
(

µ
√
r∗

σ

)
− ϕ

(
µr∗+x

σ
√
r∗

)
√
r∗

= 2
limr∗→0 ϕ

(
µ
√
r∗

σ

)
− limm∗→0 ϕ

(
µr∗+x

σ
√
r∗

)
limr∗→0

√
r∗

= 2
ϕ(0)− 0

0
= ∞.

Thus, the limit of interest is given by:

lim
r∗→0+

P(τ(−x) ∈ dr∗ | m∗(X) = r∗)

P(τι(q) ∈ dr∗, ι(q) > −x | m∗(X) = r∗)
=

1

µ
σ
Φ
(
µ
√
q

σ

)
+
ϕ
(

−µ√q
σ

)
√
q

(
0

∞− 2µ
σ

)
= 0.

This concludes the proof. The likelihood ratio converges to 0, which implies that the

limit of the conditional probability in the statement also converges to 0.
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Lemma B.2 For every µ ∈ R, q, σ2, c ∈ R+, lima→0+
∂E[M(a, q) |M(q, q) = c]

∂a
=

∞.

Proof. In equation (D.14), we derive the expression for E[M(a, q) |M(q, q) = c]:

E[M(a, q) |M(q, q) = c] =
σ2(q − a) + c2a

q

c
erf

[
c
√
a

σ
√

2q(q − a)

]
+ exp

(
−c2a

2q(q − a)σ2

)√
2a(q − a)

qπ
σ.

The derivative of this expression is given by:

∂E[M(a, q) |M(q, q) = c]

∂a
=

(
c2

q − σ2
)
erf

(
c
√
a√

2σ
√
q(q−a)

)
c

+

σ(q − 2a) exp

(
−(c2a)

(2qσ2(q−a))

)
√
2π

√
q
√
a(q − a)

+

2 exp
(
− c2a

2qσ2(q−a)

)(
cq
√
a

2
√
2σ(q(q−a))

3
2
+ c

2
√
2σ

√
a
√
q(q−a)

)(
c2a
q + σ2(q − a)

)
√
πc

+

√
2
πσ
√
a(q − a) exp

(
− c2a

2qσ2(q−a)

)(
− c2a

2qσ2(q−a)2 − c2

2qσ2(q−a)

)
√
q

.

We evaluate the limit using the properties of erf(x) = 2√
π

∫ z
0
e−t

2
dt and e−z.

lim
a→0+

∂E[M(a, q) |M(q, q) = c]

∂a
=

(
c2

q − σ2
)
erf

(
c
√
a√

2σ
√

q(q−a)

)
c︸ ︷︷ ︸

→0 as a→0+

+

σ(q − 2a) exp

(
−(c2a)

(2qσ2(q−a))

)
√
2π

√
q
√
a(q − a)︸ ︷︷ ︸

→∞ as a→0+

+

2 exp
(
− c2a

2qσ2(q−a)

)(
cq

√
a

2
√
2σ(q(q−a))3/2

+ c

2
√
2σ

√
a
√

q(q−a)

)(
c2a
q + σ2(q − a)

)
√
πc︸ ︷︷ ︸

→∞ as a→0+

+

√
2
πσ
√
a(q − a) exp

(
− c2a

2qσ2(q−a)

)(
− c2a

2qσ2(q−a)2 − c2

2qσ2(q−a)

)
√
q︸ ︷︷ ︸

→0 as a→0+

.

Thus, we conclude that: lima→0+
∂E[M(a,q)|M(q,q)=c]

∂a
= ∞.

Corollary B.1 For every µ ∈ R and q, σ2 ∈ R+, we have lima→0+ E[M(a, q)] = ∞.

Proof. The result follows directly by the law of iterated expectations and Lemma
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B.2 that characterizes the analytic expression of E[M(a, q) |M(q, q) = c].

∂E[M(a, q) |M(q, q) = c]

∂a
=
∂Ec[E[M(a, q) |M(q, q) = c]]

∂a
= Ec

[
∂E[M(a, q) |M(q, q) = c]

∂a

]
.

lim
a→0+

E[M(a, q)] = Ec
[
lim
a→0+

∂E[M(a, q) |M(q, q) = c]

∂a

]
= Ec [∞] = ∞.

First line follows from the law of iterated expectations where Ec denotes expectation
over values of M(q, q) = c, which follows from P(M(a, q) ∈ dc) derived in Equa-

tion (D.2). Second line follows by taking the derivative with respect to a inside the

expectation over c and the last line follows from taking the limit of both sides and

using the result in Lemma B.2, which shows that lima→0+
∂E[M(a,q)|M(q,q)=c]

∂a
= ∞.

Supporting Results for Proposition 1.

Lemma B.3 P(τ(−x) ∈ da) is log-concave and P(τ(−x) ∈ da | m(ψ) = a) is in-

creasing in −x.

Proof. P(τ(−x) ∈ da) is given by equation (C.7): P(τ(−x) ∈ da) = x
σa

√
a
ϕ
(

−x−µa
σ
√
a

)
da

for every x ∈ R+. ϕ(·) is a log-concave function, and similarly x
σa

√
a
is linear, and

hence is also log-concave. The product of log-concave functions are log-concave, es-

tablishing the log-concavity of P(τ(−x) ∈ da).

For second part, consider P(τ(−x) ∈ da | m(X) = a) = P(τ(−x)∈da)
P(τ(−x)∈da)+P(τι(q)∈da,ι(q)>−x) .

P(τ(−x) ∈ da | m(X) = a) is increasing if the likelihood ratio P(τ(−x)∈da)
P(τι(q)∈da,ι(q)>−x) is in-

creasing. In Equation (C.11), we derive the formula for P(τι(q) ∈ da, ι(q) > −x):

P(τι(q) ∈ da, ι(q) > −x) = 2

µ
σ
Φ

(
µ
√
q − a

σ

)
+
ϕ
(

µ
√
q−a
σ

)
√
q − a

∫ 0

−x

P(τ(z) ∈ da)dz.

Thus, the likelihood ratio in equation (C.11) can be written as:

P(τ(−x) ∈ da)

P(τι(q) ∈ da, ι(q) > −x)
=

1

2

(
µ
σΦ

(
µ
√
q−a
σ

)
+

ϕ

(
−µ

√
q−a

σ

)
√
q−a

)
P(τ(−x) ∈ da)∫ 0

−x
P(τ(z) ∈ da)dz

.

The first term is readily identifiable as a positive constant. The second term is the

ratio of a log-concave function evaluated at −x, and it is integral up to −x. It follows
from the definition of log-concavity, as noted by Bagnoli and Bergstrom (2006), that
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this ratio is decreasing in x (increasing in −x) for a log-concave function. From the

definition above P(τ(−x) ∈ da | m(X) = a) decreasing in x (increasing in −x).

Lemma B.4 −x− E[ψ(r∗) | τι(q) ∈ dm∗, ι(q) > −x] is increasing in −x.

Proof. E[ψ(r∗) | τι(q) ∈ dr∗, ι(q) > b] is given by
∫ 0
−x zP(τ(z)∈da)dz∫ 0
−x P(τ(z)∈da)dz

. It directly follows

from Lemma B.3 that P(τ(z) ∈ da) is log-concave. By Bagnoli and Bergstrom (2006),

we have that the expression −x−
∫ 0
−x zP(τ(z)∈da)dz∫ 0
−x P(τ(−z)∈da)dz

is increasing in −x.

Proposition B.1 uR(ψ, a) = −ψ(a)2 satisfies the condition given by equation (5).

Proof. Suppose that ψ(0) > α. For q = qmax
b , there exists some ã, r̃ ∈

[
0, qbmax

]
with

ã = r̃+ a′ and a′ > 0 such that 0 = E [uR(ã)− uR (r̃) | m∗
b(ψ) = r̃]. We want to show

that under quadratic preferences, the following condition is satisfied.4

P
(
τ(b) ∈ dr̃ | m∗

b (ψ) = r̃
)

P
(
τι(q) ∈ dr̃, ι(q) > b | m∗

b (ψ) = r̃
) ≥ −

∂
∂b

E [uR (ψ(r̃) +M(a′, q − r̃))− uR (ψ(r̃)) | τι(q) = r̃, ι(q) > b]
∂
∂b

E [uR (b+X(a′))− uR (b)]
. (B.4)

Note that, quadratic utility we have that:

E [uR (b+X(a′))− uR (b)] = E
[
−(b+X(a′))2 + b2

]
= −2bE [X(a′)]− E

[
X(a′)2

]
E [uR (ψ(r̃) +M(a′, q − r̃))− uR (ψ(r̃)) | τι(q) = r̃, ι(q) > b]

=− 2E [ψ(r̃)M(a′, q − r̃) | τι(q) = r̃, ι(q) > b]− E
[
M(a′, q − r̃)2 | τι(q) = r̃, ι(q) > b

]
=− 2E [ψ(r̃) | τι(q) = r̃, ι(q) > b]E [M(a′, q − r̃)]− E

[
M(a′, q − r̃)2 | τι(q) = r̃, ι(q) > b

]
.

where the last line follow from the independent increments. Taking derivative with

respect to b, we have that:

∂

∂b
E [uR (b+X(a′))− uR (b)] = E

[
−(b+X(a′))2 + b2

]
= −2E [X(a′)]

∂

∂b
E
[
uR

(
ψ(r̃) +M(a′, q − r̃)

)
− uR (ψ(r̃)) | τι(q) = r̃, ι(q) > b

]
= −2

(
∂

∂b
E [ψ(r̃) | τι(q) = r̃, ι(q) > b]

)
E
[
M(a′, q − r̃)

]
.

4As discussed in Proposition 1, this is equivalent to condition in equation (5) in main text.
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So, the condition given by equation (B.4) reduces to:

P (τ(b) ∈ dr̃ | m∗
b(ψ) = r̃)

P (τι(q) ∈ dr̃, ι(q) > b | m∗
b(ψ) = r̃)

≥ −

(
∂
∂b
E [ψ(r̃) | τι(q) = r̃, ι(q) > b]

)
E [M(a′, q − r̃)]

E [X(a′)]

≥ E [M(a′, q − r̃)]

−E [X(a′)]
.

where the second line follows from a direct corollary of Lemma B.4, combined with

the direct observation that −E [X(a′)] > 0 and E [M(a′, q − r̃)] > 0. Rearranging

this, we have that the condition is equivalent to:

P (τ(b) ∈ dr̃ | m∗
b(ψ) = r̃)E[X(a′)]+P (τι(q) ∈ dr̃, ι(q) > b | m∗

b(ψ) = r̃)E[M(a′, q−r̃)] ≤ 0

The condition is equivalent to having the expected outcome of the deviation being

closer to the unique maximizer of uR(·), which is a necessary condition for the indiffer-

ence condition 0 = E [uR(ã)− uR (r̃) | m∗
b(ψ) = r̃] to hold under any weakly-concave

utility function, as discussed in the proof of Lemma 4.

C Random Variables of Brownian Motion

Joint Distribution of X(a) and ι(q).

We are interested in studying the distribution P(X(a) ∈ dx, ι(a) ≥ −y) for x ∈ R,
y, a ∈ R+ and x ≥ −y. In order to simplify the exposition, we start with an auxiliary

Brownian motion with σ = 1 and drift µZ ∈ R i.e. Z(a) = W (a) + µZa. We

similarly define ι(a) for this process as ιZ(a) = inf{Z(u) | u ∈ [0, a]}. Jeanblanc

et al. (2009, p. 146) shows the joint distribution of Z(a) and the running minimum

ιZ(a) = min{z | z ∈ mina′∈[0,a] Z(a
′)} as:

P(Z(a) ≥ x, ιZ(a) ≥ −y) = Φ

(
−x+ µZa√

a

)
− exp(−2µZy)Φ

(
−x− 2y + µZa√

a

)
. (C.1)
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Set µZ = µ
σ
, then σZ(a) = X(a) and σιZ(a) = ι(a).5 It follows that:

P(X(a) ≥ x, ι(a) ≥ −y) = P(σZ(a) ≥ x, σιZ(a) ≥ −y) = P
(
Z(a) ≥ x

σ
, ιZ(a) ≥

−y
σ

)
.

So, equation (C.1) generalizes to X(a) as:

P(X(a) ≥ x, ι(a) ≥ −y) =
[
Φ

(
−x+ µa

σ
√
a

)
− exp

(
−2µy

σ2

)
Φ

(
−x− 2y + µa

σ
√
a

)]
. (C.2)

Using the generalized equation in (C.2), the density for X(a) can be obtained by

differentiating it with respect to x:

P(X(a) ∈ dx, ι(a) ≥ −y) =
ϕ
(

−x+µa
σ
√
a

)
− exp

(
−2µy

σ2

)
ϕ
(

−x−2y+µa
σ
√
a

)
σ
√
a

dx. (C.3)

Density and Cumulative Distribution of ι(a).

Our results in the previous section makes it very easy to characterize P(ι(a) ≥ −y).
It follows that P(X(a) ≥ −y, ι(a) ≥ −y) = P(ι(a) ≥ −y) since X(a) ≥ ι(a). So,

P(ι(a) ≥ −y) can be obtained by setting x = −y in Equation (C.2):

P(ι(a) ≥ −y) = Φ

(
µa+ y

σ
√
a

)
− exp

(
−2µy

σ2

)
Φ

(
µa− y

σ
√
a

)
∀y ∈ R+. (C.4)

The density P(ι(a) ∈ d(−y)) is given by differentiating the equation (C.4):

P(ι(a) ∈ d(−y)) = 2

σ

(
µ

σ
exp

(
−2µy

σ2

)
Φ

(
µa− y

σ
√
a

)
+

1√
a
ϕ

(
−y − µa

σ
√
a

))
dy. (C.5)

Distribution of τ(−x).

We start with an important observation is: P(τ(−y) ≤ a) = P(ι(a) ≤ −y) which

allows us to relate our results on ι(a) ≤ −x to τ(−x) ≤ a (Harrison, 2013; Shreve,

2004). This implies that the equation (C.4) for CDF of ι(a) is identical to the CDF

of τ(−x):
5The first claim follows from: σZ(a) = σ(µσa+W (a)) = µa+ σW (a) = X(a), and the second claim

follows from σmZ(a) = inf{σZ(u) | u ∈ [0, a]} = inf{σX(u)
σ | u ∈ [0, a]} = inf{X(u) | u ∈ [0, a]} =

ι(a).
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P(τ(−x) ≤ a) = P(ι(a) ≤ −x) = 1− P(ι(a) ≥ −x) ∀x ∈ R+

= 1− Φ

(
µa+ x

σ
√
a

)
+ exp

(
−2µx

σ2

)
Φ

(
µa− x

σ
√
a

)
∀x ∈ R+

= Φ

(
−µa− x

σ
√
a

)
+ exp

(
−2µx

σ2

)
Φ

(
µa− x

σ
√
a

)
∀x ∈ R+. (C.6)

The density of first hitting time of−x can be obtained from its cumulative distribution

given in equation (C.6) by differentiation:

P(τ(−x) ∈ da) =
x

σa
√
a
ϕ

(
−x− µa

σ
√
a

)
da ∀x ∈ R+. (C.7)

This is the famous distribution of the first hitting time (Karatzas and Shreve, 2012).

Joint Distribution of τ(−x) and ι(q)

Our goal this section is to characterize the joint density P(τ(−x) ∈ da, ι(q) ∈ d(−y)).
Establishing this result extends the result by Shepp (1979), which characterizes the

joint density of the maximum, its location and the endpoint. We start by studying the

cumulative distribution P(τ(−x) ≤ a, ι(q) ≤ −y). Recall that the maximal decrease

is defined as: δ(q1, q2) = inf{X(q2)−X(q1) | a ∈ [q1, q2]}. Thus, for every x, y ∈ R+

we can write:

P(τ(−x) ≤ a, ι(q) ≤ −y) =
∫ a

0

P(τ(−x) ∈ du, δ(u, q) ≤ x− y)du

=

∫ a

0

P(τ(−x) ∈ du, ι(q − u) ≤ x− y)du

=

∫ a

0

P(τ(−x) ∈ du)P(ι(q − u) ≤ x− y)du (C.8)

The first line follows from definitions of τ(·) and δ(·). The second line follows from the

equivalence of δ(u, q) and ι(q − u). Finally, the last line follows from the stationary

independent increments.
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Differentiating equation (C.8), we can obtain that for every x, y ∈ R+:

P(τ(−x) ∈ da, ι(q) ∈ d(−y)) = ∂P(τ(−x) ≤ a, ι(q) ≤ −y)
∂a ∂(−y)

=
∂

∂a ∂(−y)

∫ a

0

P(τ(−x) ∈ du)P(ι(q−u) ≤ x−y)du

By the fundamental theorem of calculus and the Leibniz rule for differentiation of

integrated functions, this expression can be written as:

P(τ(−x) ∈ da, ι(q) ∈ d(−y)) = P(τ(−x) ∈ da)P(ι(q − a) ∈ d(x− y))

This expression can be written explicitly using equation (C.5) for P(τ(−x) ∈ da) and

(C.7) for P(ι(q − a) ∈ d(x− y)) to get P(τ(−x) ∈ da, ι(q) ∈ d(−y)) as:

x

σa
√
a
ϕ

(
−x− µa

σ
√
a

)
2

 µ

σ2
exp

(
2µ(x− y)

σ2

)
Φ

(
µ(q − a) + (x− y)

σ
√
q − a

)
+
ϕ
(

(x−y)−µ(q−a)

σ
√
q−a

)
σ
√
q − a

 dady (C.9)

Likelihood Ratio of τ(−x) and τι(q) at a

By definition of m∗(X), the event m∗(X) = a is given by the set of paths X(·) that
are in the event E = {X(·) ∈ X | τ(−x) = a} ∪ {X(·) ∈ X | ι(q) = X(a) > −x}.
We are interested in the conditional probability that P(τ(−x) ∈ da | ψ(·) ∈ E) =

P(τ(−x) ∈ da | m∗(X) = a). For all x ∈ R+ this is given by:

P(τ(−x) ∈ da | X(·) ∈ E) =
P(τ(−x) ∈ da)

P(τ(−x) ∈ da) + P(τι(q) ∈ da | ι(q) > −x)

=
P(τ(−x) ∈ da)

P(τ(−x) ∈ da) +
∫ 0
−x P(τ(z) ∈ da, ι(q − a) ∈ dz)dz

P(τ(−x) ∈ da | X(·) ∈ E) =
P(τ(−x) ∈ da)

P(τ(−x) ∈ da) +
∫ 0
−x P(τ(z) ∈ da)P(ι(q − a) ∈ dz)dz

(C.10)

The first line follows from the Bayes Rule and the the definition of E. The second

line is the critical observation that P(τι(q) ∈ da, ι(q) > −x) =
∫ 0

−x P(τ(z) ∈ da, ι(q) ∈
dz)dz . Finally, the last line follows from stationary independent increments of the

Brownian motion.

The analytical expression of the conditional expectation follows from the expres-

sions of P(τ(−x) ∈ da) in equation (C.7) and similarly P(τ(−x) ∈ da, ι(q) ∈ d(−y))
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in equation (C.9). We can write down P(τ(−x) ∈ da | E) in (C.10) explicitly:

P(τ(−x) ∈ da | X(·) ∈ E) =

x
σa

√
a
ϕ
(

−x−µa
σ
√
a

)
x

σa
√
a
ϕ
(

−x−µa
σ
√
a

)
+ 2

(
µΦ

(
µ(q−a)

σ
√

q−a

)
σ2 +

ϕ
(

−µ(q−a)

σ
√

q−a

)
σ
√
q−a

)∫ 0

−x
−z

σa
√
a
ϕ
(

z−µa
σ
√
a

)
dz

da.

(C.11)

D Random Variables of Brownian Meander

The Brownian meander is extensively studied in the theoretical probability literature

starting with Durrett et al. (1977). The literature generally focuses on the Brownian

meander without the drift. One exception is a recent paper by Iafrate and Orsingher

(2020) which characterize the distribution of the Brownian Meander with a drift,

although still fixing σ = 1. We extend their results by allowing σ ∈ R+.

In order to describe the probability law of the Brownian meander, we characterize

P(X(a) ∈ dx | ι(q) ≥ 0) by studying P(X(a) ∈ dx | ι(q) ≥ −y) for y ∈ R+ and taking

the limit as −y → 0−. The reader is referred to Durrett et al. (1977) and Iafrate

and Orsingher (2020) for the details of the weak convergence. We take x, y ∈ R+,

and describe P(X(a) ∈ dx | ι(q) ≥ −y) using the Bayes’ rule and the stationary

independent increments property of the Brownian motion X(a):

P(X(a) ∈ dx | ι(q) ≥ −y) = P(X(a) ∈ dx, ι(q) ≥ −y)
P(ι(q) ≥ −y)

=
P(X(a) ∈ dx, ι(a) ≥ −y, ι(q − a) ≥ −(x+ y))

P(ι(q) ≥ −y)

P(X(a) ∈ dx | ι(q) ≥ −y) = P(X(a) ∈ dx, ι(a) ≥ −y)P(ι(q − a) ≥ −(x+ y))

P(ι(q) ≥ −y)
.

(D.1)

In the following sections, we will give an analytic expression for equation (D.1) and

obtain a companion result when X(a) is replaced with a Brownian bridge.

Distribution of M(a, q).

We have characterized the distribution for M(a, q) in equation (D.1) in terms of

P(X(a) ∈ dx, ι(a) ≥ −y) and P(ι(q) ≥ −y) given in equation (C.3) and (C.4). Using
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this, we can write P(X(a) ∈ dx | ι(q) ≥ −y) as:

ϕ
(

−x+µa
σ
√
a

)
− exp

(
− 2µy

σ2

)
ϕ
(

−x−2y+µa
σ
√
a

)
Φ
(

y+µq
σ
√
q

)
− exp

(
− 2µy

σ2

)
Φ
(

−y+µq
σ
√
q

)
[
Φ
(

x+y+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µ(x+y)

σ2

)
Φ
(

−x−y+µ(q−a)
σ
√
q−a

)]
σ
√
a

dx.

We are interested in lim−y→0− P(X(a) ∈ dx | ι(q) ≥ −y) in order to characterize the

distribution of the Brownian meander. We evaluate this limit by looking at the limit

of each term. First we have:

lim
−y→0−

Φ
(

x+y+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µ(x+y)

σ2

)
Φ
(

−x−y+µ(q−a)
σ
√
q−a

)
σ
√
a

=
Φ
(

x+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µ(x)

σ2

)
Φ
(

−x+µ(q−a)
σ
√
q−a

)
σ
√
a

.

This can be directly obtained by evaluating it at −y = 0, so we can then rewrite

lim−y→0− P(X(a) ∈ dx | ι(q) ≥ −y) as:

Φ
(

x+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µ(x)

σ2

)
Φ
(

−x+µ(q−a)
σ
√
q−a

)
σ
√
a

lim
−y→0−

ϕ
(

−x+µa
σ
√
a

)
− exp

(
− 2µy

σ2

)
ϕ
(

−x−2y+µa
σ
√
a

)
Φ
(

y+µq
σ
√
q

)
− exp

(
− 2µy

σ2

)
Φ
(

−y+µq
σ
√
q

) .

Focusing on the second part with the limit, we have that:

lim
−y→0−

ϕ
(

−x+µa
σ
√
a

)
− exp

(
− 2µy

σ2

)
ϕ
(

−x−2y+µa
σ
√
a

)
Φ
(

y+µq
σ
√
q

)
− exp

(
− 2µy

σ2

)
Φ
(

−y+µq
σ
√
q

) dx =

√
qx exp

(
µ2q
2σ2

)
ϕ
(

µa−x
σ
√
a

)
a
(
µ
√
q exp

(
µ2q
2σ2

)
Φ(

µ
√
q

σ ) + σ√
2π

)dx.
Hence, the distribution of the Brownian meander M(a, q) is given by:

P(M(a, q) ∈ dx) =

√
qx

σa
√
a

exp
(

µ2q
2σ2

)
ϕ
(

µa−x
σ
√
a

)(
Φ
(

x+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µx

σ2

)
Φ
(

−x+µ(q−a)
σ
√
q−a

))
(
µ
√
q exp

(
µ2q
2σ2

)
Φ(

µ
√
q

σ ) + σ√
2π

) dx.

(D.2)

This distribution coincides with equation (1.4) in Iafrate and Orsingher (2020) when

σ = 1, and it coincides with the well-known Rayleigh distribution whenever µ = 0,

σ = 1 and a = q.

Distribution of M(a, q) given M(q, q) = c.

We now turn our focus to the distribution ofM(a, q) given a terminal valueM(q, q) =

c. The special case of µ = 0 and σ = 1 is analyzed in Devroye (2010) and Riedel

(2021). Our analysis follows a similar path to Riedel (2021).

When conditioned on X(q) = c, the distribution of the Brownian motion is in-
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dependent of its drift µ. For this special case, P(X(q) ∈ dc, ι(q) ∈ d(−y)) is known
(Karatzas and Shreve, 2012, p. 95):

P(X(q) ∈ dc, ι(q) ∈ d(−y)) = 2(c+ 2y)
√
2πσ3

√
q3

exp

(
−(c+ 2y)2

2σ2q

)
dcdy. (D.3)

As the Brownian motion has normally distributed increments, we can write:

P(X(q) ∈ dc) =
1√

2πσ
√
q
exp

(
− c2

2σ2q

)
dc. (D.4)

We use the Bayes’ Rule and equations (D.3) and (D.4) to describe the density of ι(q)

of a Brownian Bridge with terminal value c at q:

P(ι(q) ∈ d(−y) | X(q) = c)) =
P(ι(q) ∈ d(−y), X(q) ∈ dc))

P(X(q) ∈ dc)
=

2(c+ 2y)

σ2q
exp

(
c2 − (c+ 2y)2

2σ2q

)
dy.

We are interested in P(M(a, q) ∈ dx |M(q, q) = c) = lim−y→0− P(X(a) ∈ dx | X(q) =

c, ι(q) ≥ −y). We follow a similar line of argumentation as before:

P(X(a) ∈ dx, ι(q) ≥ −y,X(q) = c)

P(ι(q) ≥ −y,X(q) = c)
=

P(X(a) ∈ dx, ι(q) ≥ −y | X(q) = c)

P(ι(q) ≥ −y | X(q) = c)

=
P(X(a) ∈ dx, ι(a) ≥ −y | X(q) = c)P(δ(a, q) ≥ −x | X(q − a) = c− x)

P(ι(q) ≥ −y | X(q) = c)

=
P(X(a) ∈ dx | X(q) = c)P(ι(a) ≥ −y | X(a) = x,X(q) = c)P(δ(a, q) ≥ −x,X(q − a) = c− x)

P(ι(q) ≥ −y,X(q) = c)
.

(D.5)

The first equality follows from Bayes rule. The second and third equality follow

from stationary independent increments and the definitions of the related random

variables. We provide a closed-form expression for equation (D.5), by studying each

term separately. We start with P(X(a) = x | X(q) = c) in the numerator. This is

the well-known distribution over a Brownian bridge given by (Shreve, 2004; Harrison,

2013):

P(X(a) ∈ dx | X(q) = c) =
1

σ
√

a
q

√
(q − a)

ϕ

(
x− ca

q

σ
√

a
q

√
q − a

)
dx. (D.6)

We shift our focus to the second expression on the numerator. Note that P(ι(a) ≥
−y | X(a) = x,X(q) = c) = P(ι(a) ≥ −y | X(a) = x). Thus, this expression can be
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directly calculated from (D.3).

P(ι(a) ≥ −y | X(a) = x) =

∫ 0

−y

P(X(a) ∈ dx, ι(a) ∈ du)du = 1− exp

(
−2y(x+ y)

σ2a

)
. (D.7)

P(δ(a, q) ≥ −x|X(q − a) = c− x) and P(ι(a) ≥ −y|X(q) ∈ dc) is obtained similarly.

P(δ(a, q) ≥ −x | X(q − a) = c− x) = P(ι(q − a) ≥ −x | X(q − a) = c− x)

= 1− exp

(
−2x(c− x+ x)

σ2(q − a)

)
P(δ(a, q) ≥ −x | X(q − a) = c− x) = 1− exp

(
−2cx

σ2(q − a)

)
. (D.8)

P(ι(q) ≥ −y | X(q) = c) = 1− exp

(
−2y(c+ y)

σ2q

)
. (D.9)

We are interested in P(X(a) = x | X(q) = c, ι(q) ≥ −y) described in (D.5) as

−y → 0−. Observe that P(ι(q−a) ≥ −x | X(q−a) ∈ d(c−x)) and P(ι(q−a) ≥ −x |
X(q − a) ∈ d(c − x)) does not depend on y. Inspecting the limit involving equation

(D.7) and (D.9), we have that:

lim
y→0−

=
1− exp(2y(x+y)

σ2t
)

1− exp(2y(c+y)
σ2q

)
=
qx

ca
. (D.10)

Using (D.5), (D.6), (D.8), and (D.10) we can write P(X(a) = x | X(q) = c, ι(q) ≥ −y)
as:

P(X(a) ∈ dx | X(q) ∈ dc, ι(q) ≥ 0) =
qx

ca

ϕ

(
x− ca

q√
a
q

√
q−aσ

)
√

a
q

√
(q − a)σ

(
1− exp

(
−2cx

σ2(q − a)

))
dx. (D.11)

So, we can rewrite Equation (D.11) as the following. We make two observations to

simplify the expression. First qx
ca

1√
a
q

√
q−aσ =

xq
√
q

ca
√
a
√
q−aσ . Second, by the definition of

ψ(·), we have(
1− exp

(
−2cx

σ2(q − a)

))
ϕ

(
x− ca

q√
a
q

√
q − aσ

)
= ϕ

(
x− ca

q√
a
q

√
q − aσ

)
− ϕ

(
x+ ca

q√
a
q

√
q − aσ

)
.
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Thus, we obtain

P(X(a) ∈ dx | X(q) = c, ι(q) ≥ 0) =
xq

√
q

ca
√
a
√
q − aσ

[
ϕ

(
x− ca

q√
a
q

√
q − aσ

)
− ϕ

(
x+ ca

q√
a
q

√
q − aσ

)]
dx.

(D.12)

This coincides with equation (3.4) in Riedel (2021) if σ = 1, and Durrett et al. (1977).

Moments of M(a, q) conditional on M(q, q) = c

Using equation (D.12), we can write the expectation.6

E[X(a) | X(q) = c, ι(q) ≥ 0] =

∫ ∞

0

xP(X(a) ∈ dx | X(q) ∈ dc, ι(q) ≥ 0)dx.

First, we can simplify the integral by writing the normal density explicitly and taking

all possible constants out. We write E[X(a) | X(q) ∈ dc, ι(q) ≥ 0]:

q
√
q

ca
√
a
√
q − aσ

1√
2π

exp

(
−c2a

2q(q − a)σ

)∫ ∞

0

x exp

(
−qx2

2a(q − a)σ2

)(
exp

(
xc

(q − a)σ2

)
− exp

(
−xc

(q − a)σ2

))
dx.

We set A = q
2a(q−a)σ2 and B = c

(q−a)σ2 , and simplify the expression as.7

E[X(a) | X(q) = c, ι(q) ≥ 0] =
q
√
q

ca
√
a
√
q − aσ

1√
2π

exp

(
−c2a

2q(q − a)σ2

)∫ ∞

0

x2 exp
(
−Ax2

)
sinh(Bx)dx.

(D.13)

Riedel (2021) shows that for constants A and B, we have the following.8

∫ ∞

0

x2 exp
(
−Ax2

)
sinh(Bx)dx =

√π [2A+B2
]
e

b2

4A erf
(

B
2
√
A

)
4A2

√
A

+
B

2A2

 .
So, E[X(a) | X(q) = c, ι(q) ≥ 0] given by equation (D.13) is:

E[X(a) | X(q) = c, ι(q) ≥ 0] =
q
√
q

ca
√
a
√
q − aσ

2√
2π

exp

(
−c2a

2q(q − a)σ2

)√π [2A+B2
]
e

B2

4A erf
(

B
2
√
A

)
4A2

√
A

+
B

2A2

 .
We can simplify this expression as:

6This integral is very similar to the one studied by Riedel (2021) in Equation (9.1)
7Here sinh(·) := ex − e−x denotes the Hyperbolic Sine function.
8This coincides with Equation (9.3) in Riedel (2021), except the coefficients A and B are different.
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E[X(a) | X(q) = c, ι(q) ≥ 0] =
σ2(q − a) + c2a

q

c
erf

[
c
√
a

σ
√

2q(q − a)

]
+ exp

(
−c2a

2q(q − a)σ2

)√
2a(q − a)

qπ
σ,

(D.14)

from the following identities involving A =
q

2a(q − a)σ2
and B =

c

(q − a)σ2
:

2A+B2 =
σ(q − a)q + c2a

a(q − a)2σ4
, 4A2

√
A =

√
2(q2

√
q)

σ5(a2
√
a)(q − a)2

√
q − a

,

B

2
√
A

=
c
√
a√

2(q − a)qσ
,

B2

4A
=

c2a

2q(q − a)σ2
,

B

2A2
=

2σ2(q − a)a2c

q
.

E Proofs of Corollaries in the Main Text

Proof of Corollary 1. Consider the first-point strategies m∗
q(·) and m∗

q′(·) for

games with action spaces A = [0, q] and A′ = [0, q′] with q < q′ ≤ qmax. By definition

of a first-point strategy, for every ψ ∈ Ψ it holds that ψ(m∗
q(ψ)) ≥ ψ(m∗

q′(ψ)) ≥ b,

where the set of paths that this holds with equality has measure zero under ω(·). The
conclusion follows immediately.

Proof of Corollary 2. Similarly, take any realized path ψ(·). Consider the

first-point strategies m∗
b(·) and m∗

b′(·) for games with bias b < b′ such that the first-

point equilibrium exists. By definition of a first-point strategy and continuity of the

Brownian path: (i) If ψ(m∗
b(ψ)) = b, then ψ(m∗

b′(ψ)) = b′; (ii) If b′ > ψ(m∗
b(ψ)) > b,

then ψ(m∗
b′(ψ)) = b′; and (iii) If ψ(m∗

b(ψ)) > b′, then ψ(m∗
b′(ψ)) = ψ(m∗

b′(ψ)) > b′.

Thus, for all paths ψ(m∗
b′(ψ))−b′ < ψ(m∗

b(ψ))−b with the inequality is strict for a

measurable set of paths. The opposite is true relative to the receiver’s ideal outcome

of 0. The conclusion follows.

Proof of Corollary 3. By construction, we have that:

E[ψ(r∗) | m∗(ψ) = r∗] = P(ι(q) > b) E[ι(q) | ι(q) > b] + P(ι(q) ≤ b) b

We have ψ(a) = µa + σW (a) where W (a) is the Wiener Process. It is a well-known
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result that W (a) < 0 for some a with probability one. Thus, with probability one

there exists a s.t. ψ(a) < µa. As σ → ∞ we have that ψ(a) < b for some a ∈ [0, q]

with probability 1. It follows that σ → ∞, P(ι(q) ≤ b) → 1 and the result holds.

F Natural Language Refinements

This allows the sender to use ‘neologisms’ – messages not used in the equilibrium

with a natural meaning – to communicate about her type without being constrained

to the meaning of equilibrium messages.

Definition 1. For each Θ, a neologism is a message n(Θ). A neologism is be-

lieved if it causes the receiver to adopt beliefs by conditioning on the event ψ ∈ Θ,

i.e. ω(ψ | ψ ∈ Θ).

A neologism n(Θ) is credible if types in Θ prefer the resulting payoff if n(Θ) is believed

over the equilibrium payoff; and everyone else prefers the equilibrium payoff over the

resulting payoff if n(Θ) is believed. Formally, we can state if a neologism is credible

based on the following set of inequalities:

Definition 2. Neologism n(Θ) is credible relative to an equilibrium (m, a, ω) if it

satisfies (N1) and (N2):

(N1) uS(a′|ψ) > uS(m, a|ψ) ∀ψ ∈ Θ and a′ ∈ argmaxa′′∈∆A u
R(a′′, ψ|ψ ∈ Θ).

(N2) uS(a′|ψ) ≤ uS(m, a|ψ) ∀ψ /∈ Θ and a′ ∈ argmaxa′′∈∆A u
R(a′′, ψ|ψ ∈ Θ).

Farrell (1993) provides the literal meaning of the neologism n(Θ) as the following:

“My type is ψ ∈ Θ. You should believe me because if my type is in Θ, it is

better for me to reveal that my type is in the set Θ instead of obtaining the

equilibrium outcomes. If my type is not in Θ, it is better for me to receive the

equilibrium outcome instead of you believing that my type is in the set Θ.”

Definition 3. An equilibrium (m, a, ω) is neologism-proof if no neologism is cred-

ible relative to it.

Remark 1. Neologism-proofness is essentially a property about equilibrium payoffs.

It follows from (N1) and (N2) that an equilibrium is neologism proof if all equilibria

giving rise to the same payoffs are neologism proof.
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Remark 2. In the Brownian model certain types of neologism might lead to un-

defined posterior beliefs. For example, consider the neologism “The realized path

is differentiable.” The posterior ω(ψ | ψ ∈ Θ) corresponding to this neologism is

not well-defined, and can have an arbitrary value. This is not an issue for our con-

clusions, because the equilibria that we show to be neologism-proof are immune to

any neologism and arbitrary beliefs ω(ψ | ψ ∈ Θ) as the equilibrium outcomes are

sender-optimal.

Announcement-Proof Equilibria.

An extension of neologism-proofness of Farrell (1993) is the announcement-proofness

notion of Matthews, Okuno-Fujiwara, and Postlewaite (1991) (Hereafter referred as

M-OF-P). Their insight is that one should consider all possible neologism together,

instead of considering deviations by a single neologism in isolation. They formalize

this by studying deviations from the equilibrium by an announcement strategy which

specify all sender types that use neologisms (deviant types) and which neologisms

they use.

Definition 4. An announcement strategy for the sender is (n,Θ) where Θ ⊆ Ψ is

a measurable set of deviant types and n : Θ → ∆M is a neologism strategy. Moreover,

the triplet (s, n,Θ) with s ∈ n(Θ) is called an announcement.

Definition 5. The announcement is believed if the receiver is convinced that

every type ψ ∈ Θ makes the announcement (s, n,Θ) with s chosen according to

n(· | ψ), and no type that is not in Θ would have made such an announcement. If

the announcement is believed the receiver has a posterior belief given by the Bayes’

Rule, i.e. ω(ψ | n(ψ) = s, ψ ∈ Θ).

M-OF-P (1991) provides the literal meaning of announcement (s, n,Θ) as:

“My type is ψ ∈ Θ, and I am sending message s according to strategy n(· | ψ).
If I had been type ψ′ ∈ Θ, I would have made an announcement that differed

only in so far as s would have been chosen according to strategy n(· | ψ′). If my

type had not been in Θ, I would not have used announcement strategy (n,Θ).”

To formalize which announcements are credible, and thus believed, we introduce some

additional definitions from M-OF-P (1991).
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• Pessimistic sender of type ψ who announces (s, n,Θ) when it is believed expects:

uS(s, n,Θ | ψ) = min
{
uS(a | ψ) : a ∈ argmax

a′∈∆A

{
uR(a′ | n(ψ) = s, ψ ∈ Θ)

}}
.

• Optimistic sender of type ψ who announces (s, n,Θ) when it is believed expects:

uS(s, n,Θ | ψ) = max
{
uS(a | ψ) : a ∈ argmax

a′∈∆A
{uR(a′ | n(ψ) = s, ψ ∈ Θ)}

}

Definition 6. An announcement strategy (n,Θ), and the corresponding announce-

ments (s, n,Θ) are weakly credible at equilibrium (m, a, ω) if they satisfy the fol-

lowing three conditions:

(A1) Pessimistic deviant types prefer the announcement payoff to the equilibrium,

with the inequality strict for some ψ ∈ Θ and s ∈ n(ψ):

uS(s, n,Θ | ψ) ≥ uS(m, a | ψ) for every ψ ∈ Θ and s ∈ n(ψ)

(A2) Optimistic non-deviant types prefer the equilibrium to the announcement:

uS(s, n,Θ | ψ) ≤ uS(m, a | ψ) for every ψ ∈ Ψ \Θ and s ∈ n(Θ).

(A3) The announcement is internally consistent:

uS(s, n,Θ | ψ) ≥ uS(s′, n,Θ) for all ψ ∈ Θ, s ∈ n(ψ), and s′ ∈ n(Θ) \ {s}.

Definition 7. An equilibrium (m, a, ω) is strongly announcement-proof if no

announcement is weakly credible relative to (m, a, ω).

Remark 3. Strong announcement-proofness is a stronger condition compared to

neologism proofness. It is an immediate observation that neologism-proofness is a

special case of announcement-proofness when all sender deviant types Θ follow the

same strategy n(Θ) = Θ. This can be formally observed by comparing (N1) and (N2)

with (A1) and (A2) – and (A3) is vacuously satisfied. Thus, every neologism forms

a weakly credible announcement, but not vice versa.
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M-OF-P (1991) also introduces a weaker version of strongly announcement-proof

equilibria called announcement-proof equilibrium. This is done by strengthening the

weak credibility with an additional condition (A4).

Definition 8. An announcement strategy (n,Θ), and the corresponding announce-

ments (s, n,Θ) are credible at equilibrium (m, a, ω) if they satisfy conditions (A1),

(A2), (A3) and (A4).

(A4) Consider any other (n′,Θ′) that satisfies (A1),(A2) and (A3) relative to (m, a, ω):

uS(s, n,Θ | ψ) ≥ uS(s, n,Θ | ψ) for all ψ ∈ Θ ∩Θ′, s ∈ n(ψ), and s′ ∈ n′(ψ).

Definition 9. An equilibrium (m, a, ω) is announcement-proof if no announce-

ment is credible relative to (m, a, ω). Moreover, either all or none of the equilibrium

that gives rise to a particular outcome are strongly announcement-proof.

Remark 4. It is also true that strong announcement-proofness and announcement-

proofness are essentially a property about equilibrium payoffs. Either all or none

of the equilibria that gives rise to a particular equilibrium payoff are (strongly)

announcement-proof.9

G Other Complex Environments

Minimal Complexity. Let the state space be Ψ = R × {−1, 1} such that for

(w, z) ∈ Ψ we have that ψ(a | w, z) = b+z(a−w). The receiver has prior beliefs given
by ω((w, z)) over Ψ. Note there is no known status quo point. The sender follows the

first-point strategy (the optimal action is now unique and the ‘first’ modifier moot)

m∗ : Ψ → R.
For the receiver, the set of states consistent with a recommendation r∗ are:

m∗−1(r∗) = {(r∗,−1), (r∗, 1)}. m∗−1(r∗) is not single valued for any r∗ ∈ R, thus
m∗(·) satisfies partial invertibility. Sender strategy m∗(·) satisfies response uncer-

tainty, as the set of optimal responses to the states that are consistent with message

r∗ are given by: a(m∗−1(r∗)) = {r∗ − b, r∗ + b}.
9This follows from the fact that conditions A1-A3 refer to the equilibrium only through the interim
utility levels it gives the Sender and condition A4 is not a condition on the equilibrium.
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To check receiver incentive compatibility, consider a deviation a′ ∈ A given rec-

ommendation r∗. The receiver’s conditional beliefs are ω((r∗, 1) | m(ψ) = r∗) and

ω(r∗,−1 | m∗(ψ) = r∗) where ω(r∗, 1 | m∗(ψ) = r∗) + ω(m∗,−1 | m∗(ψ) = r∗) = 1.

E(a | m∗(ψ) = r∗) = −ω(m∗, 1 | m∗(ψ) = r∗)(b+ (a− r∗))2 − ω(r∗,−1 | m∗(ψ) = r∗)(b− (a− r∗))2

= −b2 − (a− r∗)2 − 2b(a− r∗)(ω(r∗, 1 | r∗)− 1)

d

da
E(a | m∗(ψ) = r∗) = −2 | a− r∗ | −2b(2ω(r∗, 1 | m∗(ψ) = r∗)− 1)

d2

da2
E(a | m∗(ψ) = r∗) = −2

The first order condition is satisfied if and only if ω(m∗, 1 | m∗(ψ) = r∗) = 1
2
.

Sender-Receiver Misalignment without Directional Uncertainty. Let the

action and message spaces be the set of positive integers. The state space is Ψ =

Z+ × {1, 2} such that for (w, z) ∈ Ψ:

ψ(a | w, z) =


b if a = w

0 if a = w + z

100b if a /∈ {w,w + z}

The receiver has beliefs prior belief given by ω((w, z)) over Ψ. Note there is no known

status quo point. The sender follows the first-point strategy (the optimal action is now

unique and the ‘first’ modifier moot: m∗ : Ψ → R. For the receiver, the set of states

consistent with a recommendation r∗ are: m∗−1(r∗) = {(r∗, 1), (r∗, 2)}. m∗−1(r∗) is

not single valued for any r∗ ∈ R. Thus m∗(·) satisfies partial invertibility. Sender

strategy m∗(·) satisfies response uncertainty, as the set of optimal responses to the

states that are consistent with recommendation r∗ are given by: a(m∗−1(r∗)) = {r∗+
1, r∗ +2} To check receiver incentive compatibility, consider a deviation a′ ∈ A given

recommendation r∗. The receiver’s conditional beliefs are ω((r∗, 1) | m∗(ψ) = r∗) and

ω((r∗, 2) | m∗(ψ) = r∗) where ω(r∗, 1 | m∗(ψ) = r∗) + ω(r∗, 2 | m∗(ψ) = r∗) = 1.
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E(a | m∗) =



−b2 if a = r∗

−ω(r∗, 2 | m∗(ψ) = r∗)10000b2 if a = r∗ + 1

−ω(r∗, 1 | m∗(ψ) = r∗)10000b2 if a = r∗ + 2

−10000b2 if a /∈ {r∗, r∗ + 1, r∗ + 2}

It is optimal for the receiver to follow the recommendation as long as ω(r∗, 1 | r∗(ψ) =
r∗) is not too close to 0 or 1.

Local Uncertainty. The space of outcome maps Ψ is the paths of Ornstein-

Uhlenbeck process. Formally, Ψ is the set of solutions to the following stochastic dif-

ferential equation where W (a) is the Wiener process: dψ(a) = −κ (ψ(0)− ψ(a)) da+

σdW (a) For this process κ is the mean-reversion coefficient, and σ is the volatility

term.

Partial invertibility is satisfied under the first-point strategy as, just like the Brow-

nian Motion, there are infinitely many paths ψ(·) of the Ornstein-Uhlenbeck process

consistent with the message m∗(ψ) = r∗. Moreover, for every action a ∈ R++ there

exists a realization of ψ such that ψ(a) ∈ argmaxa−ψ(a)2, and the response uncer-

tainty is also satisfied.

Consider the recommendation r∗ and a deviation a ∈ R. Deviations to a < r∗

are worse for the receiver as, by the first-point strategy and the continuity of OU

process, ψ(a) > b for every a < r∗ with certainty. For deviations a > r∗, the expected

outcome and variance are, recalling that ψ(0) is the mean of the process:

E[ψ(a) | m∗(ψ) = r∗] = ψ(0)− (ψ(0)− ψ(r∗)) exp(−κ(a− r∗))

Var(ψ(a) | m∗(ψ) = r∗) =
σ2

2κ
(1− exp[−2κ(a− r∗)])

As exp(−κ(a − r∗)) < 1, the expected outcome is weakly greater than m∗(ψ) for

a > r∗ whenever ψ(r∗) ≤ ψ(0), which must be true given the first-point strategy.

As variance is positive, it is optimal for the receiver to accept the recommendation.

(Note that this argument holds even if ψ(r∗) ∈ (b, ψ(0)]).

23



References

Bagnoli, Mark and Ted Bergstrom (2006): “Log-concave probability and its

applications,” in Rationality and Equilibrium: A Symposium in Honor of Marcel

K. Richter, Springer, 217–241.

Devroye, Luc (2010): “On exact simulation algorithms for some distributions re-

lated to Brownian motion and Brownian meanders,” in Recent developments in

applied probability and statistics, Springer, 1–35.

Durrett, Richard T, Donald L Iglehart, and Douglas R Miller (1977):

“Weak convergence to Brownian meander and Brownian excursion,” The Annals

of Probability, 117–129.

Farrell, Joseph (1993): “Meaning and credibility in cheap-talk games,” Games

and Economic Behavior, 5 (4), 514–531.

Harrison, J Michael (2013): Brownian models of performance and control, Cam-

bridge University Press.

Iafrate, Francesco and Enzo Orsingher (2020): “Some results on the Brow-

nian meander with drift,” Journal of Theoretical Probability, 33 (2), 1034–1060.

Jeanblanc, Monique, Marc Yor, and Marc Chesney (2009): Mathematical

methods for financial markets, Springer Science & Business Media.

Karatzas, Ioannis and Steven Shreve (2012): Brownian motion and stochastic

calculus, vol. 113, Springer Science & Business Media.

Matthews, Steven A, Masahiro Okuno-Fujiwara, and Andrew Postle-

waite (1991): “Refining cheap-talk equilibria,” Journal of Economic Theory, 55

(2), 247–273.

Riedel, Kurt (2021): “Mean and variance of Brownian motion with given final

value, maximum and argmax,” Stochastic Models, 37 (4), 679–698.

Shepp, Lawrence A (1979): “The joint density of the maximum and its location

for a Wiener process with drift,” Journal of Applied probability, 16 (2), 423–427.

Shreve, Steven E (2004): Stochastic calculus for finance II: Continuous-time mod-

els, vol. 11, Springer.

24


	Preliminaries
	Results used in the Main Proofs
	Random Variables of Brownian Motion
	Random Variables of Brownian Meander 
	Proofs of Corollaries in the Main Text
	Natural Language Refinements
	Other Complex Environments

