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Objectives. To understand how the impact of judicial rotation and subsequent judge shopping on the

defendant’s sentence length is mediated by three operational characteristics: the amount of judicial rotation,

the allowable shopping time window for defendants, and the capacity utilization of the judicial system.

Methods. Using data from South Carolina in 2000-2001, we formulate and calibrate a mathematical model

in which judges rotate across counties, defendants shop for judges, and the sentencing (either by plea or

trial) is the result of strategic interactions among the defendant, the judge and the prosecutor. We vary the

three operational characteristics via simulation.

Results. The mean and standard deviation of the defendant sentence length decreases (with decreasing

returns to scale) in the amount of judicial rotation and the allowable shopping window for defendants, and

increases in the capacity utilization, with judicial rotation and the shopping window exhibiting synergistic

behavior. The average reduction is modest (≤ 10%), although a small proportion of defendants are impacted

in a significant way. In a variant of the model adapted to an urban setting where all defendants have access

to all judges, the mean and standard deviation of the sentence length decreases in the number of judges,

even in the absence of intertemporal judge shopping.

Conclusions. Judicial rotation in a rural setting can lead to a modest reduction in the mean sentence and

to more equitable sentencing. These effects can occur naturally in an urban setting.
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1. Introduction

This study is motivated by the empirical findings in Hester (2017), which looks at criminal sen-

tencing outcomes in South Carolina during 2000-2001. A distinctive aspect of South Carolina’s

judicial system, which consisted of 50 judges presiding over 46 counties, was judicial rotation:

although judges spent much of their time in their home circuit, they traveled to an average of 12

counties (typically holding court for a week in each county) and counties encountered an average

of 13 different judges throughout the year. As is the case in other U.S. jurisdictions, more than

98% of sentenced cases ended in a plea bargain and less than 2% went to trial. Results in Hester

(2017) revealed that judicial rotation had two behavioral effects: it led to judge shopping, where

defendants would strategically wait for a lenient judge before agreeing to a plea bargain, and to

the cross-pollination of ideas and norms by increasing the interactions among judges and prosecu-

tors. Consequently, judicial rotation led to a decrease in both the mean and standard deviation of

the sentence length in South Carolina. Indeed, even though South Carolina was a non-guidelines

state, the inter-county variability in sentence lengths was smaller than in most guideline states.

See Hester (2017) for a fuller discussion of the contextual setting and the results.

In this study, we construct a mathematical model that attempts to capture the effects of judge

shopping but does not explicitly incorporate cross-pollination among judges. We model the process

in which defendants shop for a judge, the prosecutor proposes a plea deal to the defendant, where

both sides are aware of the leniency of the chosen judge, and the defendant either accepts the

plea deal or goes to trial. A distinctive aspect of our model is the consideration of queueing and

congestion: arriving defendants can only choose judges that have slack capacity in their schedule.

There were not sufficient data to perform an econometric analysis of the interactions among

the judge, prosecutor and defendant. Specifically, while we know which judge was chosen by each

defendant, we do not know which judges were previously rejected by the defendant during the

shopping process. Nonetheless, we are able to estimate the model parameters from the South Car-

olina data. By simulating the mathematical model, we compute the mean and standard deviation
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of the sentence length as a function of three operational characteristics: the amount of judicial

rotation, the allowable shopping time window for defendants, and the capacity utilization of the

judicial system (i.e., the total case workload divided by the total judicial capacity).

Because the full statewide judicial rotation scheme of South Carolina appears unique to that

jurisdiction, we also adapt the model to an urban setting where defendants have the opportunity

to shop for judges. This context of multiple judges within an urban jurisdiction has been the

more typical application of the ideas of individual versus master calendaring, and likely has more

far-reaching implications in larger jurisdictions where parties can attempt strategically to identify

favorable judges. Applying our model in this setting helps to quantify the effects of shopping

availability and capacity utilization in large jurisdictions.

2. Literature Review

By some accounts, the identity of the sentencing judge may matter more to a case outcome than

the facts of the case or the background of the defendant. A robust line of sentencing literature

focuses on the importance of the identity of the sentencing judge (e.g., Frazier and Bock (1982);

Johnson (2006); Myers and Talarico (1987); Spohn (1990); Steffensmeier and Britt (2001)). Con-

sistent with Ulmer (2019) application of Inhabited Institutions Theory to the study of courts and

sentencing, we consider the broader impact that court infrastructure characteristics can have on

outcomes through the mechanism of the judicial calendaring system. Inhabited Institutions The-

ory emphasizes how individual actors exercise discretion, reacting to and contributing institutional

rules and cultures. In our context, we consider how actors are able to use judge assignment rules to

effect more optimal sentencing outcomes—that is, how parties are able to use calendaring systems

and local rules and norms to strategically shop for more favorable judges. Early work by Eisenstein

et al. (1988) and Ulmer (1997) highlighted differences between individual calendaring systems and

master calendaring systems. Under individual calendaring systems judges are assigned a case and

retain control of it while in master calendaring systems different judges may handle various tasks,

such as arraignment, motions, presiding over the plea or trial, and sentencing. Because the style of
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calendaring system can be a matter of local rules, systems may differ across counties even within

the same jurisdiction (Ulmer (1997)). This early work on court communities found that in master

calendaring systems, parties were sometimes able to influence court administrators or otherwise

strategically engage in motions or delays in order to “judge shop.” Hester (2017: 218) found that

South Carolina’s statewide master calendaring system in conjunction with the practice of judicial

rotation led to “an exaggerated form of shopping” for judges. Using a mixed methods approach

he found the practice of regular judge rotation (in which judges routinely traveled from county to

county holding court) led to the influence of “plea judges”—lenient judges whose sentencing pref-

erences established baseline norms or going rates for sentencing. Since judges rotated, defendants

could strategically choose to enter guilty pleas when plea judges were holding court in their juris-

diction. This reality led other pragmatic judges to adopt plea judge norms for the sake of efficiency.

Hester (2017)’s work was largely based on qualitative interviews with judges. We extend this prior

work by formulating and calibrating a mathematical model of judicial rotation. We also adapt this

model to settings involving defendants in a large urban setting, which may offer insights into how

our formal model of rotation in South Carolina would generalize to other settings involving judge

shopping.

The bulk of our modeling involves the dynamic judge shopping process, which is influenced by

the recent models in Yang (2016), Silveira (2017) and Wang (2019). These are part of a much

larger literature that analyzes models of the plea versus trial game between a defendant and a

prosecutor (e.g., Gross and Syverud (1991) and references therein). Among the three operational

characteristics we study, only capacity constraints have been modeled in the judicial context (e.g.,

Ostrom et al. (1999)).

3. Model

Our simulation model of the judicial process involves three agents for each case – the judge, the

prosecutor and the defendant – and results in either a plea bargain or a trial. The output of the

simulation model includes three primary performance measures that are defined in §3.4: the mean
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and the standard deviation of the sentence length of all plea bargains (the mean sentence at trials

is assumed to be the same for each judge, and hence is omitted) and the standard deviation of

the mean sentence length across counties. The goal of our analysis is to understand how these

performance measures are impacted by three key operational characteristics: the amount of judicial

rotation, the defendant shopping window, and the aggregate judge utilization.

Our simulation model consists of three modules that are described in §3.1-3.3: the defendant

arrivals, the judge schedule and the plea bargain, with each module containing one of the three key

operational characteristics. The defendant arrivals module describes the timing and characteristics

of defendants that arrive to the system, where the arrival rate depends upon the specified judge

utilization. The judge schedule module assigns judges to counties each week based on the specified

amount of judicial rotation, and computes the number of pleas that they can process. The plea

bargain module includes the interactions among the three agents, and the final sentence imposed

on a defendant is determined by the judge he chooses (which in turn depends on the defendant

shopping window), the plea offer recommended or presented by the prosecutor and approved (or

specified, if a straight plea) by the judge, and whether the defendant accepts the plea offer (i.e.,

an agreement is reached) or refuses the plea offer and goes to trial. Figure 1 shows a high-level

description of our model structure. The estimation of the parameters for each module is described

in §4. For ease of reference, all model parameters are described in Table 1.

3.1. Defendant Arrivals

Defendants in our model are indexed by i= 1,2, . . . and each arriving defendant is assigned a set of

covariate values xi, which for ease of presentation is suppressed and embedded in the subscript i.

The number of defendants who arrive to county c during a week is modeled by a Poisson random

variable Nc with mean λc. The value of λc is dictated by the key operational characteristic ρ,

which is the desired judge utilization (i.e., the overall proportion of available time that judges

spend presiding over cases) in our simulation model. In §4.3, we compute λc, see Equation (6), and

describe the assignment of the covariate values xi.
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Figure 1 The simulation model contains three modules: the defendant arrivals (§3.1), the judge schedule (§3.2)

and the plea bargain (§3.3). The performance measures are defined in §3.4, and the two datasets are

described in §4.1.

Table 1 The model parameters

Parameter Description Module Value

ρ Judge utilization
Defendant arrivals

Specified
λc Defendant arrival rate (6)
xi Defendant covariates §4.3, Table 2
η Judge travel probability

Judge schedule

Specified
Tjct Available hours for judge j to work in county c in week t Master calendar
nT

jct Number of trials in county c assigned to judge j in week t Master calendar
γP Mean processing time for a plea 0.018 weeks
γT Mean processing time for a trial 0.839 weeks
r Defendant shopping window

Plea bargain

Specified
pi Probability defendant i receives a zero-length plea sentence (7), Table 10
θi Probability of conviction at trial for defendant i (8), Table 11
τi Expected sentence if convicted at trial for defendant i (9), Table 12
`j(·) Lower bound on the approved sentence length from judge j §4.4, Fig. 18
uj(·) Upper bound on the approved sentence length from judge j §4.4, Fig. 18
cd(i) Trial cost for defendant i (in months) §4.4, Fig. 20
d Defendant waiting cost per week (in months per week) 0.1
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3.2. Judge Schedule

We index judges by j = 1, . . . , J and counties by c= 1, . . . ,C. The judge schedule module specifies

the location (county or counties) of judge j in each week t, along with the number of plea cases that

judge j can process in week t. Each judge is assigned one (and occasionally more than one) home

county, and the weekly judge locations are driven by the key operational characteristic η, which is

the probability that a judge is traveling (i.e., working at a non-home county) in any given week.

The weekly judge locations in the module output are denoted by Cjct, which is the proportion of

judge j’s time in week t that is assigned to county c.

For j = 1, . . . , J and t = 1, . . . ,52 in the master calendar dataset, let Tjct be the proportion of

week t that judge j is available to process pleas and trials in county c, and let nTjct be the number

of trials in county c assigned to judge j in week t. Let γP and γT be the mean processing time

(independent of judge) for a plea and a trial, respectively. Then the number of pleas that judge j

can process in week t in county c is denoted by Njct and modeled as a Poisson random variable

with mean (Tjct−nTjctγT )+/γP .

The parameters Tjct, n
T
jct, γP and γT are estimated in §4.2, and η is the specified operational

characteristic. The outputs of the judge schedule module are Cjct and Njct.

3.3. Plea Bargain Process

The key operational characteristic in the plea bargain module is the defendant shopping window r,

which is an integer number of weeks. An arriving defendant chooses the available judge within his

shopping window that minimizes his total cost. In our model, defendant i receives a zero-length

sentence (e.g., probation or supervision) with probability pi, which is a function of the defendant’s

covariates but (see §4.4 for a justification) independent of the presiding judge.

We now describe the plea bargain process under the assumption that defendant i does not receive

a zero-length sentence. Defendants may reject a plea deal and decide to go to trial. Depending on

a defendant’s covariates xi, if he goes to trial then he is convicted with probability θi, in which

case he receives the expected sentence length τi. In addition, if the defendant goes to trial, which



Author:
8

is a longer judicial process, he incurs the additional cost cd(i), which is in time units. Hence, the

expected total cost of resolving defendant i’s case via trial is θiτi+ cd(i), which is observable by all

three agents.

Crucially, judges vary in their leniency, which is modeled using two leniency functions `j(·) and

uj(·) for each judge j. These functions define a lower and upper bound, respectively, on the sentence

length as a function of θiτi, which is the unconditional mean sentence length if defendant i goes

to trial. More specifically, judge j only approves plea deals with a sentence length in the range

[`j(θiτi), uj(θiτi)], where `j(θiτi)≤ uj(θiτi) for all j and for all values of θiτi ≥ 0.

We assume that prosecutors try to avoid trials by resolving cases through plea bargaining.

However, in doing so, prosecutors aim to maximize the sentence length, leading to three possible

outcomes:

• If θiτi + cd(i)>uj(θiτi), then the prosecutor offers uj(θiτi), which the defendant accepts, and

the judge approves the plea.

• If θiτi + cd(i) < `j(θiτi), then there are no plea offers that both the defendant would accept

and the judge would approve. The case goes to trial and the defendant’s expected cost is

θiτi + cd(i).

• If `j(θiτi)≤ θiτi + cd(i)≤ uj(θiτi), then the prosecutor offers θiτi + cd(i), which the defendant

accepts and the judge approves.

To summarize, min{θiτi + cd(i), uj(θiτi)} is the expected sentence that defendant i receives either

through a plea bargain or at trial, provided that he is not offered a zero-length sentence during the

plea bargaining process, which has probability pi. To pick judge j, the defendant needs to delay

going to court until judge j works in the defendant’s county and has sufficient capacity to hear the

case. Let d denote the defendant’s cost of waiting per week and wi(j) denote the number of weeks

that he needs to wait for judge j. Recall that defendants are given the window of r weeks to shop

for judges. Letting Ji(r) denote the set of available judges, i.e., judges who have assigned sessions

with remaining capacity within r weeks upon defendant i’s arrival, the defendant chooses judge j∗

such that

j∗ ∈ arg min
j∈Ji(r)

[(1− pi)min{θiτi + cd(i), uj(θiτi)}+wi(j)d] . (1)



Author:
9

The parameters pi, θi, τi, cd(i), `j(x), uj(x) and d are estimated in §4.4, whereas the shopping

window r is a key operational characteristic that we specify. The parameter wi(j) and the set Ji(r)

are dictated by the weekly judge-location assignments Cjct and the weekly judge capacities Njct,

both of which are outputs of the judge schedule module. That is, we make judge j unavailable

in week t after she has been assigned Njct plea cases, and update the Ji(r) sets accordingly.

The output of the plea bargain module is the expected (nonzero) sentence for each defendant i,

min{θiτi + cd(i), uj∗(θiτi)}.

3.4. Performance Measures

Because the probability of a zero-length sentence is independent of the judge in our model, our

three performance measures include only cases with nonzero sentences. Let Ic be the set of sim-

ulated defendants from county c whose sentence length is positive, and let I = ∪Cc=1Ic. Let si =

min{θiτi + cd(i), uj∗(θiτi)} be defendant i’s sentence length in the model output. The mean and

standard deviation of the plea sentence length are given by

µ=

∑
i∈I si

|I|
,

σ=

√∑
i∈I(si−µ)2

|I|
.

Our final performance measure is the standard deviation across counties of the mean plea sentence

length:

σc =

√∑C

c=1(µc−µ)2

|C|
,

where

µc =

∑
i∈Ic si

|Ic|
.

4. Parameter Estimation

In this section, we estimate the parameters in our model. We describe the data in §4.1, and estimate

the parameters of the judge schedule module, the defendant arrivals module and the plea bargain

module, respectively, in §4.2–4.4.
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4.1. Data

We use two datasets from the South Carolina circuit court (i.e., the court of general jurisdiction)

between July 1, 2000 and June 30, 2001: the master calendar and the sentencing dataset. The

master calendar describes the weekly schedule (i.e., location among the C = 46 counties) of the

J = 50 judges between July 2000 and June 2001. South Carolina trial judges preside over both

criminal and civil matters with terms of court typically lasting one week and consisting of only

criminal matters (general session) or civil matters (common pleas) for the given term. We restrict

our attention in the master calendar to judge-weeks in which the judge is in general session for

at least a portion of the week (judges can also, e.g., be on vacation, out sick, in circuit court or

involved with the state grand jury), which comprises 854.4 (33.1%) of the 2582 judge-weeks.

The sentencing dataset contains offenders that are convicted of a felony or serious misdemeanor.

There are 17,516 sentencing events in the dataset, and 246 (1.4%) of these events were discarded

because we could not impute the correct court dates. Of the remaining 17,270 sentencing events

(17,012 pleas and 258 trials), 14,977 (14,748 pleas, 229 trials) involve cases where the judge was in

general session. Table 2 shows the covariates that we have for each sentencing event, which describe

characteristics of the offense and the defendant.

4.2. Judge Schedule Parameters

In this subsection, we compute the weekly judge schedules Cjct, the available times in general

session Tjct and the trial allocations nTjct, and the mean processing times γP and γT .

The starting point for our determination of the weekly judge schedules is a mathematical program

that assigns judges to counties so as to cover the plea cases from each county while minimizing the

degree of judge traveling. In our assignment problem, we focus on satisfying the sentencing cases

that were resolved through plea bargains (i.e., excluding those cases that were resolved through

trials) in the sentencing dataset. There are two reasons to exclude trials: (i) the primary goal

of this work is to understand the impact of the key operational characteristics on plea bargains,

which represent 98.5% of the cases in our sentencing dataset, and (ii) trials have a more complex
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Table 2 Covariates for each sentencing event

Variable Description Values

Offense seriousness

1 = Misdemeanor
Five-level ordinal score; 2 = Felony (Class F)
From the South Carolina 3 = Felony (Class E)
crime classification scheme 4 = Felony (Class D)

5 = Felony (Class A, B, C or Unclassified)

Commitment score
12-level ordinal measure; 1 = Least serious
Number of commitment offenses 12 = Most serious

Offense type

1 = Violent
Four-category indicator of the 2 = Drug
classification of crime committed 3 = Property

4 = Other

Mandatory minimum Minimum prison sentence
1 = Yes
0 = No

Criminal history

1 = None
Five-level ordinal score; 2 = Minimal
Derived from the number and 3 = Moderate
severity of prior offenses 4 = Considerable

5 = Extensive

Black Race
1 = Yes
0 = No

Male Sex
1 = Female
0 = Male

Black× offense seriousness Interaction term (1,0)× (1,2,3,4,5)
Black× crime history Interaction term (1,0)× (1,2,3,4,5)

and longer timeline than pleas and the datasets do not gives us enough information on the trial

schedules.

Let κj be the number of weeks in the year (July 2020 - June 2021) that judge j had a general

session assignment in the master calendar (see Table 5 in §A.1 for values), and let dc equal γP

(which is estimated below) times the number of pleas processed in general session by county c in

the year in the master calendar (see Table 6 in §A.1 for values). Our decision variable is the fraction

of judge j’s capacity that is assigned to county c, xjc, and the quadratic function xjc(1−xjc) in (2)

forces the optimal xjc values towards 0 or 1, thereby discouraging judge travel. This yields the

optimization problem

min
C∑
c=1

J∑
j=1

κjxjc(1−xjc) (2)

s.t.
J∑
j=1

κjxjc ≥ dc, ∀c= 1, . . . ,C, (3)
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C∑
c=1

xjc = 1, ∀j = 1, . . . , J, (4)

0≤ xjc ≤ 1, ∀j = 1, . . . , J, c= 1, . . . ,C. (5)

The solution x∗jc to this optimization problem is given in Table 7 in §A.1. If x∗jc > 0, then we say

that county c is one of judge j’s home counties. Because the objective is to minimize the degree of

judge traveling, the solution we obtain assigns only six of 50 judges to more than one home county.

In §A.1, we provide an algorithm that maps x∗jc into Cjct, where
∑C

c=1Cjct = 1 for all j and t.

To obtain accurate estimates of the mean processing times γP and γT , we restrict our attention

to sentencing events in the general session. Recall Tjct be the proportion of week t that judge j is

in general session in county c, which can be recovered from the master calendar (this differs from

Cjct, which is constructed by the algorithm in §A.1) and nTjct denote the number of trials that judge

j handled in county c in week t = 1, . . . ,52 in the master calendar. It follows that κj in Table 5

in §A.1 satisfies κj =
∑C

c=1

∑52

t=1 Tjct.

We use linear regression to estimate the mean processing times, γP and γT . In an analagous

manner to above, we define nPjct to be the number of pleas that judge j handled in county c in

week t= 1, . . . ,52 in the master calendar. Let nTjc =
∑

t n
T
jct and nPjc =

∑
t n

P
jct be the total number

of trials and pleas that judge j handled throughout the year in county c. The regression model,

which uses the total number of weeks that judge j worked in county c in the master calendar as

the dependent variable, is

52∑
t=1

Tjct = αc + γPn
P
jc + γTn

T
jc + εjc, for j = 1, . . . , J, c= 1, . . . ,C,

where αc is interpreted as the average idle time (in weeks) in each county. The regression results

(Table 9 in the Appendix) imply that it takes on average 0.018 weeks to process a plea (i.e., a

judge can process 1/0.018=56.2 pleas per week) and 0.839 weeks to process a trial. With Tjct, n
T
jct,

γP and γT in hand, we can generate the random variable Njct in §3.2.

As an aside, we note that the total number of judge-weeks in general session during the year

is
∑J

j=1

∑C

c=1

∑52

t=1 Tjct = 854.4 weeks. In addition, we know from §4.1 that there are 14,748 pleas
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and 229 trials in general session in the sentencing dataset. Hence, we estimate the judge utilization

in the data to be

0.839(229) + 0.018(14,748)

854.4
= 0.536.

4.3. Defendant Arrival Parameters

In this subsection, we compute the weekly arrival rate for each county, λc, and determine the

covariate values for each arrival, xi.

The quantity
∑J

j=1 κjx
∗
jc, where x∗jc is the solution to the mathematical program in (2)-(5), is

interpreted as the total number of judge-weeks in a year devoted to county c. Recall that γP is the

mean processing time (in weeks) for a plea, which is estimated in §4.2. Given a desired value for

the utilization ρ, we compute the defendant weekly arrival rate to county c by

λc =
ρ
∑J

j=1 x
∗
jcκj

52γP
, (6)

where κj appears in Table 6 in §A.1 and x∗jc is given in Table 7 in §A.1.

Let Dc denote the set of all defendants from county c in the sentencing dataset and recall that Nc

is a Poisson random variable with mean λc. Then each week we randomly draw (with replacement)

Nc defendants from the set Dc and – following Hester and Hartman (2017) – use the values for the

covariates xi in Table 2.

4.4. Plea Bargain Parameters

In this subsection, we estimate the defendant probability of incarceration during a plea bargain

(pi), the expected sentence length at trial (θiτi), the judge leniency functions (lj(·), uj(·)), the

defendant cost of going to trial (cd(i)) and the defendant delay cost (d).

Defendant Probability of Incarceration During a Plea Bargain. To estimate the probability

pi, we use the covariates xi in Table 2 and define the binary variable yi to equal 1 if defendant i is

incarcerated in the sentencing dataset, and to equal 0 otherwise. We fit a logistic regression model

using the 17,012 sentencing cases that were resolved by plea bargaining,

pi = Pr(yi = 0|xi) =
exp(xTi β)

1 + exp(xTi β)
, (7)



Author:
14

where β is the vector of regression coefficients for the variables in xi. The estimated coefficients

are provided in Table 10 in the Appendix. An alternative regression model incorporated the judge

identity as an additional covariate, but the results were very similar and we used the sparser model.

Defendant Expected Sentence Length at Trial. Because θi and τi appear in our plea bargain

module only as the product θiτi, it suffices to estimate the product. To predict defendant i’s

expected sentence length at trial θiτi, we use the hurdle regression model in Hester and Hartman

(2017) and fit the model using the 258 cases that were resolved by trial. The hurdle model uses a

logistic regression to predict observations that are zero, and a zero-truncated count model (negative

binominal) to predict the remaining nonzero cases:

Pr (τi = 0|xi) =
exp(xTi w)

1 + exp(xTi w)
= 1− θi, (8)

Pr(τi|τi > 0,xi) = θi


Γ(τi+α

−1)

τi!Γ(α−1)

(
α−1

α−1+µ

)α−1 (
µ

α−1+µ

)τi
1− (1−αµ)−1/α

 for τi > 0, (9)

where w is the set of regression coefficients for the variables in xi (Table 11 in the Appendix), Γ(·)

is the gamma function, α is a dispersion parameter, and µ is the mean of the negative binomial

model (i.e., µ = exp(xTi γ), where γ is the set of regression coefficients for the negative binomial

regression model; see Table 12 in the Appendix).

For defendant i, we predict his probability of conviction at trial, θ̂i, using (8) and the coefficients

in Table 11 in the Appendix, and predict his sentence length upon conviction at trial, τ̂i, using (9)

and the coefficients in Table 12 in the Appendix. The expected trial sentence length of defendant

i is estimated to be θ̂iτ̂i.

Judge Leniency Functions. To estimate the judge leniency thresholds `j(·) and uj(·) for each

judge as functions of the expected sentence length at trial, θiτi, we restrict attention in the sen-

tencing dataset to those defendants who accepted a plea bargain and were incarcerated. In the

sentencing dataset, let si be defendant i’s sentence and Ij be the set of plea bargains handled by

judge j for j = 1, . . . , J .
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To estimate the leniency functions for a particular judge j, we create a scatter plot of (θ̂iτ̂i, si)

for i∈ Ij. The key idea is to construct a convex hull for judge j generated by the origin (0,0) and

the points (θ̂iτ̂i, si) for i ∈ Ij, and use the upper and lower boundary of the convex hull (given by

the two red dots in Figure 2) to estimate the maximum and the minimum sentence length that

judge j would approve for defendant i with a mean sentence length at trial equal to θ̂iτ̂i (i.e., values

of uj(θiτi) and `j(θiτi)).

Aj

θ̂iτ̂i

`j(θ̂iτ̂i)

uj(θ̂iτ̂i)

Expected sentence at trial, θτ
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Figure 2 A scatter plot of the sentencing handled by judge j and the constructed convex hull Aj . This figure is

for illustration purposes and is not based on the data.

We modify this approach in two ways that are described in §A.2. First we detect and remove out-

liers from the observations {(θ̂iτ̂i, si)|si > 0, i ∈ Ij} using the Mahalanobis Distance, which results

in 3.44% of observations being identified as outliers, with a range from 0% to 5.77% for each

judge. Second, so that we can estimate the judge leniency thresholds for defendants whose expected

sentence length at trial is greater than maxi∈Ij θ̂iτ̂i, we extrapolate the convex hull by including

two artificial points that are determined based on the maximum possible expected trial sentence

obtained from the sentencing dataset. After these two modifications, the resulting convex hulls for

all judges appear in Fig. 18 in the Appendix.
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To provide a sense of how these leniency functions impact the sentences in our model, we use

each judge’s convex hull to compute the mean sentence for all defendants in the sentencing dataset

that received a nonzero sentence (Fig. 19 in the Appendix). The mean overall sentence length is

51.6 months, and the mean for individual judges ranges from 44.6 (Judge 36) to 62.0 (Judge 15).

Defendant Trial Cost. To estimate the cost of going to trial, cd(i), we let j(i) denote the presiding

judge for defendant i’s case in the sentencing dataset. We have four cases to consider for defendant

i: (1) he received sentence si > 0 in a plea bargain that satisfies `j(i)(θ̂iτ̂i)< si < uj(i)(θ̂iτ̂i), (2) he

received a sentence si = uj(i)(θ̂iτ̂i) in a plea bargain, (3) he received his sentence through a plea

bargain and was not incarcerated, i.e., si = 0, and (4) his case went to trial.

We partition all cases according to these four outcomes by defining the sets

I1 =∪Jj=1{i∈ Ij|si > 0, and `j(i)(θ̂iτ̂i)< si <uj(i)(θ̂iτ̂i)},

I2 =∪Jj=1{i∈ Ij|si > 0, and si = uj(i)(θ̂iτ̂i)},

I3 =∪Jj=1{i∈ Ij|si = 0},

I4 =∪Jj=1(Ij \
{
I1
j ∪I2

j ∪I3
}

).

We estimate the trial cost cd(i) when i belongs to I1,I2,I3, and I4 separately. When i∈ I1, our

plea bargain model implies that

si = min
{
θ̂iτ̂i + cd(i), uj(i)(θ̂iτ̂i)

}
, (10)

= θ̂iτ̂i + cd(i) because si <uj(i)(θ̂iτ̂i). (11)

Thus, we can infer defendant i’s cost of trial as cd(i) = si− θ̂iτ̂i in this case.

For the other three cases l= 2,3,4, we define a set Sl of similar defendants, and use a k−nearest

neighbor algorithm with k= 20 (see §A.3 for a discussion of how we set k) to estimate the trial cost

for defendants in groups I2, I3 and I4. More specifically, for l= 2,3,4, if |Sl|< 20 the estimated trial

cost is the average value of cd(i
′) where i′ ∈ Sl. If |Sl| ≥ 20, then we select 20 observations that are

the nearest neighbors to observation (θ̂iτ̂i, si) using the Mahalanobis distance from
{

(θ̂iτ̂i, si)
}
∪Sl.
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We let Sl
′

denote the set of those selected observations and estimate the trial cost by the average

value of cd(i
′) where i′ ∈ Sl′ .

It remains to compute the sets S2, S3 and S4. When i ∈ I2, we can only infer that cd(i) ≥

uj(i)(θ̂iτ̂i)− θ̂iτ̂i. Because set I1 contains most of the defendants with a positive sentence and we

can infer their trial costs, we use those estimates to infer the trial costs of the defendants in set

I2. Hence we let

S2 =
{
i′ ∈ I1 : cd(i

′)≥ uj(i)(θ̂iτ̂i)− θ̂iτ̂i
}
.

When i∈ I3, we cannot infer any bounds on cd(i), and therefore let S3 = I1. When i∈ I4, we infer

that cd(i)< `j(i)(θ̂iτ̂i)− θ̂iτ̂i, and let

S4 =
{
i′ ∈ I1 : cd(i

′)≤ `j(i)(θ̂iτ̂i)− θ̂iτ̂i
}
.

The histograms of cd(i) for i ∈ Ii, i= 1, . . . ,4 appear in Fig. 20 in the Appendix, where the cost

of going to trial is estimated to be negative for many defendants. We interpret this to mean that

many defendants should prefer to go to trial rather than to plea bargain.

Defendant Waiting Cost. To estimate d, we simulate ten 50-year replications of the system,

and collect performance measures for the middle 30 years of each replication. Because we use

the actual judge schedule in the master calendar, the operational characteristics η and ρ do not

apply. We set the shopping window to r = 4 weeks, which is the base-case value in §5. We use

the 14,977 sentencing events in general session to estimate the weekly arrival rate and allow it

to vary across months to more accurately mimic the seasonality in the data, and randomize the

timing and characteristics of the defendant arrivals as described earlier. Because τi and cd(i) are

measured in months whereas wi(j) is measured in weeks in (1), the cost d is in units of months per

week. Consequently, with an assumption of four weeks per month, d= 0.25 means that the cost of

delaying a court case for one week is equal to one week of detention. We consider {0,0.1,0.25} as

possible values for d. The three performance measures are quite insensitive to d (Table 3) and we

use d= 0.1.
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Table 3 Statistics from the sentencing dataset and simulation results with weekly
waiting cost d∈ {0,0.1,0.25} and a defendant shopping window r= 4

Data d= 0 d= 0.1 d= 0.25

Mean plea sentence
54.27 50.21 50.29 50.29

(for nonzero sentences)
Standard deviation of plea sentence 55.18 52.36 52.34 52.34

Percentage of trial cases 1.51% 1.94% 1.99% 1.99%
Standard deviation across counties

11.74 12.52 12.50 12.50
(for nonzero sentences)

5. Results

We investigate the impact of the key operational characteristics in §5.1, and in §5.2 consider a

hypothetical urban model in which all defendants and judges are located in one place (i.e., all

defendants have access to all judges). All simulation results consider 10 independent replications

of 50 years, with the first and last 10 years of each replication discarded.

5.1. Impact of the Key Operational Characteristics

In this subsection, we investigate the impact of the judge travel probability η, the defendant shop-

ping window r and the judge utilization ρ on the three performance measures. We consider base

values of η= 0.5, r= 4 weeks (although South Carolina published annual schedules for judges, these

schedules were updated frequently) and ρ = 0.5. Figs. 3-8 show the performance measures (the

shaded areas surrounding the curves are 95% confidence intervals) plotted against one of the oper-

ational characteristics (with values η ∈ {0,0.1,0.2, . . . ,0.9}, r ∈ {1,2,3,4,5,6,8,10,14,18,22,25}

weeks and ρ ∈ {0.5,0.7,0.9,0.95,0.99}), with a second operational characteristic set at its base

value, and several different curves for changes in the third operational characteristic. In addition,

three-dimensional plots of the performances measures versus two operational characteristics with

the third set at its base value appear in Figs. 21-23 in the Appendix.

We defer a discussion of the county variation (Figs. 3c-8c) and focus on the impact on the mean

and standard deviation of the plea sentences. As the travel probability η increases (Figs. 3-4),

the mean and standard deviation of the plea sentences decreases with diminishing impact (i.e.,

the curves are convex), and the impact is larger when the shopping window r is large or the

judge utilization ρ is small. Judges travel more as η increases, increasing defendants’ shopping
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opportunities and therefore their likelihood of securing a more lenient judge. A larger shopping

window gives defendants a longer period to choose their preferred judges. However, when judge

utilization is high, defendants cannot always choose a more lenient judge because the lenient judges

may be overwhelmed with other defendants’ pleas.
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Figure 3 Performance measures versus the travel probability η ∈ {0,0.1, . . . ,0.9}, where the defendant shopping

window is r ∈ {1,4,10,25} weeks and judge utilization is fixed at ρ= 0.5.

Similarly, as the shopping window r increases (Figs. 5-6), the mean and standard deviation of

the plea sentence decrease with decreasing returns, with the impact being larger when the travel

probability η is large or the judge utilization ρ is small.

In contrast, when the judge utilization ρ increases (Figs. 7-8), the mean and standard deviation

of the plea sentence increase, and are slightly convex (i.e., exhibit increasing returns), with the
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(c) Standard deviation across counties

Figure 4 Performance measures versus the travel probability η ∈ {0,0.1, . . . ,0.9}, where the judge utilization

ρ∈ {0.5,0.7,0.9,0.99} and the shopping window is fixed at r= 4 weeks.

impact being greater for larger values of the travel probability η or the shopping window r. Overall,

at least over the ranges considered here, the impact of judge utilization is smaller than the impacts

of the travel probability and the shopping window.

Returning to the impact of the key operational characteristics on the standard deviation of

the mean plea sentence across counties, we see that the county variation typically (with a few

exceptions) decreases as the travel probability η or the judge utilization ρ increases (Figs. 3c-

4c, 7c-8c); in the latter case, a high utilization reduces the chance of choosing a lenient judge for

defendants across all counties rather than benefiting some counties more.
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Figure 5 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks, where

the travel probability η ∈ {0,0.3,0.6,0.9} and judge utilization is fixed at ρ= 0.5.

However, the behavior of county variation is more complex when the shopping window r

increases, both with a fixed ρ or a fixed η. When we fix the judge utilization at ρ= 0.5 (Fig. 5c),

if the travel probability η is small then increasing the shopping window r primarily impacts the

counties with multiple home judges, which initially increases the county variation. In contrast,

when η is large, an increase in the shopping window allows defendants in all counties to shop,

leading to a decrease in county variation.

When we fix the travel probability at η= 0.5 (Fig. 6c), an increasing shopping window r enlarges

the defendants’ shopping options. A longer shopping window provides a larger benefit to defendants

in counties with more visiting judges. When r is large enough, however, the defendants from most
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Figure 6 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks, where

the judge utilization ρ∈ {0.5,0.7,0.9,0.99} and the travel probability is fixed at η= 0.5.

counties are able to see all possible judges from their shopping window, which stabilizes the county

variation.

We perform three more calculations in this subsection in an attempt to gain more insight. First,

to put the range of performance in Figs. 3-8 in perspective, we simulate an idealized scenario where

defendants have access to all judges (η = 1, r =∞), and judges have infinite capacity to handle

pleas (ρ= 0). The results of this idealized scenario (Table 4) suggest that large values of the travel

probability and the shopping window (e.g., Figs. 3-5) can achieve over half of the impact of the

idealized scenario.
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(c) Standard deviation across counties

Figure 7 Performance measures versus the judge utilization ρ∈ {0.5,0.7,0.9,0.95,0.99}, where the travel proba-

bility η ∈ {0,0.3,0.6,0.9} and the shopping window is fixed at r= 4 weeks.

Table 4 Results from an idealized scenario (η= 1,
r=∞, ρ= 0)

Mean plea sentence 43.75
Standard deviation of plea sentence 49.28

County variation 9.12

Second, referring back to the three possible outcomes in the plea bargain model in §3.3, we

simulate the model under the base-case values (η= 0.5, r= 4, ρ= 0.5) and find that 6.4% of cases

go to trial, the plea sentence equals the judge’s upper allowable sentence in 9.2% of the cases, and

the plea sentence is equal to the defendant’s expected total trial cost in 84.5% of the cases.

Finally, we elaborate on (and provide a visualization of) this last calculation by roughly esti-

mating an upper bound on the proportion of defendants who are impacted by judge shopping. We
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(c) Standard deviation across counties

Figure 8 Performance measures versus the judge utilization ρ ∈ {0.5,0.7,0.9,0.95,0.99}, where the shopping

window r ∈ {1,4,10,25} weeks and the travel probability is fixed at η= 0.5.

consider a hypothetical two-judge scenario in which each defendant is assigned the most lenient

judge (Judge 36 in Fig. 19 in the Appendix) with probability 0.60 and the harshest judge (Judge

15 in Fig. 19 in the Appendix) with probability 0.40, where these probabilities maintain the mean

nonzero sentence length to be 51.6 months, which is the overall mean sentence length in Fig. 19

in the Appendix. The defendants whose (θiτi, si) fall in the interior of both convex hulls in Fig. 24

in the Appendix, which accounts for 90.5% of the defendants, are indifferent between Judges 15

and 36 because they would receive the same sentence length, θiτi + cd(i), from either judge. In

contrast, the defendants with higher θiτi + cd(i) are more likely to be sensitive to the choice of
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judge. These last two calculations suggest that a small proportion of defendants are impacted, but

that the impact on some of these individuals is large.

5.2. Urban Model

In this subsection, we adapt our model from the South Carolina setting to an urban setting, where

all defendants and judges are located in the same place. We assume that defendants have access

to all judges. This assumption is not realistic in that a case would generally be assigned to a judge

without input from a defendant. However, local rules and practices may allow parties to engage in

some strategic maneuvering, and our analysis is intended to gain insight into the impact of such

maneuvering. The traveling probability η now plays no role, and we introduce another parameter

whose value is specified: k, which represents the number of judges. Our simulation model is the

same as before, except we now allow all J = 50 judges to be accessible to each defendant. Recall

that an arriving defendant in our simulation model is assigned a set Ji(r) of judges assigned to the

defendant’s county with remaining capacity within r weeks, and then chooses a judge according

to (1). We change the model by allowing Ji(r) to include all J = 50 judges that have remaining

capacity within r weeks of the defendant’s arrival. If the number of judges in this set, |Ji(r)|,

satisfies |Ji(r)| ≤ k, then the defendant chooses the best among the |Ji(r)| judges according to (1).

If |Ji(r)| > k, then the simulation chooses k out of |Ji(r)| judges at random, and the defendant

chooses the best among these k judges according to (1). Hence, the system behaves as if there are k

judges, but this construction allows us to use the characteristics of all J = 50 judges in the dataset.

As in §5.1, we plot our performances measures (county variation no longer plays a role)

against two key operational characteristics, keeping the third one fixed (Figs. 9-14, with

the three-dimensional plots displayed in Figs. 25-27 in the Appendix), considering k ∈

{1,2,3,4,5,6,7,10,15,20} and a base-case value of k= 4 judges.

We highlight the differences in the results between the urban model and the South Carolina

model. As expected, the mean and standard deviation of the sentence length decreases as the num-

ber of judges k increases because increasing k provides more shopping options. While this impact
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increases with a larger shopping window r and a smaller judge utilization ρ, these dependencies

(Figs. 9-10) are much smaller than in the corresponding results (Fig. 3) in the South Carolina

model. Most notably, a shopping window of r= 1 week still allows defendants shopping opportuni-

ties when k is large. In addition, a comparison of Figs. 6 and 11 reveals that the system performance

is very insensitive to the judge utilization ρ in the urban model when the shopping window r is

large, because the defendant gets more choices in the urban model than the South Carolina model

when ρ and r are large. In Fig. 13, the mean plea sentence is insensitive to the judge utilization ρ

when the shopping window r is large because most defendants have access to k judges when r is

large, regardless of the utilization.
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Figure 9 Performance measures versus the number of judges k ∈ {1,2,3,4,5,6,8,10,15,20} in the urban model,

where the shopping window r ∈ {1,4,10,25} weeks and the judge utilization is fixed at ρ= 0.5.

6. Discussion

Motivated by the insights and data in Hester (2017), we formulate and calibrate a mathematical

model that allows judges to rotate among counties, allows defendants to shop for lenient judges,

and incorporates a sentencing model that captures the strategic interactions among a judge, a

defendant and a prosecutor. Our goal is to gain an understanding of how three key operational

characteristics – the amount of judicial rotation (as measured by the judge travel probability), the

amount of leeway defendants have in shopping (as measured by the shopping time window) and
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Figure 10 Performance measures versus the number of judges k ∈ {1,2,3,4,5,6,8,10,15,20} in the urban model,

where the judge utilization ρ∈ {0.5,0.7,0.9,0.99} and the shopping window is fixed at r= 4 weeks.
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Figure 11 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks in the

urban model, where the judge utilization ρ ∈ {0.5,0.7,0.9,0.99} and the number of judges is fixed at

k= 4.

the system congestion (as measured by the judge utilization) – impact the mean and standard

deviation of nonzero sentence lengths, and the county variation in mean sentence lengths. The

latter two of these three performance measures quantify the amount of sentencing inequity across

defendants.

Our first-order findings (Figs. 3-8) are intuitive: the mean and standard deviation of the plea

sentence length decrease when judges travel more among counties, defendants have a longer shop-
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Figure 12 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks in the

urban model, where the number of judges k ∈ {1,2,3,4,5,6,8,10,15,20} and the judge utilization is

fixed at ρ= 0.5.
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Figure 13 Performance measures versus the judge utilization ρ ∈ {0.5,0.7,0.9,0.99} in the urban model, where

the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks and the number of judges is fixed at

k= 4.

ping window, and judges have more excess capacity. All three characteristics make it easier for a

defendant to plea in front of a lenient judge. The impact of all three characteristics have decreasing

returns to scale, in that a moderate amount of judge shopping, a moderate shopping window, and a

moderate amount of excess judicial capacity achieve a significant proportion of the potential effects.

In terms of interaction effects, we find that the judge travel probability and the shopping window
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Figure 14 Performance measures versus the judge utilization ρ ∈ {0.5,0.7,0.9,0.99} in the urban model, where

the number of judges k ∈ {1,4,10,20} and the shopping window is fixed at r= 4 weeks.

are complements: each variable generates a bigger impact when the other variable is large. That is,

very little impact occurs when judges travel but defendants cannot shop, or when defendants can

shop but the judges do not travel. In contrast, high judge utilization reduces – but does not negate

– the first-order and synergistic effects of increasing the judge travel probability and the shopping

window. In addition, although the overall reduction on the mean and standard deviation is modest

(≈10%), we find that the changes in sentencing as a result of these key operational characteristics

affect a small proportion of defendants – typically those who have a high cost of going to trial –

but the impact on these individual defendants is large.

The Hester (2017) study uses data from South Carolina in 2000-2001, when judicial rotation

was used and most counties had a single home judge Hester (2017). Very few states have employed

judicial rotation during the last 20 years. In contrast, urban areas throughout the US typically

have multiple judges in the same county, which may allow for some judge shopping by defendants.

Hence, we adapt the South Carolina model into an urban model, where the number of judges

replaces the judge travel probability as the third key operational characteristic. As expected, the

mean and standard deviation of the plea sentence length are reduced when the number of judges

and the shopping window are large and the judge utilization is low. However, in contrast to the

county model, the impact of the number of judges is much larger than the impact of the shopping
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window, and there is very little synergy: even if intertemporal shopping is not allowed (i.e., r = 1

week), the defendant still gets to choose the most lenient among the available judges and can lower

his mean sentence length. The impact of judge utilization is smaller than it is in the South Carolina

model.

The system we attempt to model is very complex, and our model should be viewed as a mere

caricature of the actual process. In particular, we use a highly idealized model for the plea bargain

process (e.g., we do not include costs of going to trial for the prosecutor, as in Silveira (2017)),

and a simplified model for how judges spend their time and process cases (e.g., judicial decisions

do not depend on the amount of congestion, as in Yang (2016)). Moreover, there are no data to

directly estimate some of the parameters, particularly the cost of going to trial and the waiting

cost. However, some of our methods may be useful, particularly our construction of the convex

hulls to estimate judge leniency.

These limitations lead us to conclude that the exact numerical results in Figs. 3-8 should not be

interpreted as accurate counterfactual predictions of the system behavior in South Carolina in 2000-

2001. However, we believe that our broad qualitative insights are likely to be robust. For one, in

relation to previous work in South Carolina, a jurisdiction with heavy utilization of judicial rotation,

our findings articulate distinct dimensions of rotation operationalized as the amount of rotation,

the shopping window, and capacity utilization. The findings suggest that increased rotation and

a longer shopping window can lead to larger decreases in the mean and standard deviation of

sentence length, with a small impact of capacity utilization. Thus, expanding choice of judges could

assist in aims of incarceration reduction and achieving greater uniformity in sentencing. Second, as

applied in the urban models, introducing greater choice of judge could advance similar aims, even

with short shopping windows. We do note the paradox, however, that introducing greater shopping

choice in an urban jurisdiction may facilitate inter-judge uniformity within the urban jurisdiction

but thereby exacerbate county differences within a state. As a result, some defendants in rural

settings may suffer in comparison if their county has a single harsh judge.
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APPENDIX

The Appendix contains supplementary material pertaining to the parameter estimation procedure in §A.

Tables 9-12 and Figs. 19-27 are referred to in the main text.

Appendix A: Parameter Estimation

We map from x∗jc to Cjct in §A.1, modify the convex hulls in §A.2, and choose the value of k in the k-nearest

neighbor analysis in §A.3.

A.1. Mapping from x∗jc to Cjct

We first provide an algorithm for the judge schedule Cjct when the judge travel probability η = 0, and use

that as a basis for generating judge schedules when η > 0.

Cjct when η = 0. The mathematical program (2)-(5), which has input values in Tables 5-6, has solution

x∗jc (Table 7), which gives the fraction of each judge’s capacity that is allocated among her home counties.

This solution yields a target capacity for county c of
∑J

j=1 κjx
∗
jc, and our goal is to generate a schedule that

satisfies these target capacities. We use the master calendar to determine the timing of judge assignments

and only change the assigned county for each judge-week in order to satisfy the target allocation for each

county. The algorithm consists of the following steps.

• Step 1. Obtain the judge assignment for each judge-week directly from the master calendar.

• Step 2. For each judge-week, if the judge is assigned to one county as in Table 7, assign the county as

the working county for this assignment. Else, move to Step 3.

• Step 3. Let djc be the residual target allocation from judge j to county c as in Table 7. Initially, we

set djc = κjx
∗
jc. Let S0

j = {c|x∗jc > 0} be the set of possible home counties for judge j.

• Step 4. Randomly select county c∈ S0
j with probability djc/

∑
c∈S0

j
djc.

— If djc is greater than the judge’s working time of this judge-week, meaning that this judge-week

can be fully used for the selected county, assign the selected county as the working county. Update

djc by decreasing the judge’s working time of this judge-week.

— Else, we know that only part of the judge-week is needed to satisfy the target allocation from the

selected county. Assign the selected county to the judge-week, update the judge’s residual capacity

by setting djc = 0, and repeat this step with the residual capacity of this judge-week.
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Cjct when η > 0. To generate a judge schedule when η > 0, we start with the judge schedule when η = 0

and then determine whether the judge of each judge-week is a home judge or a traveling judge based on the

value of η. We then assign the same working county as in the η = 0 judge schedule for judge-weeks whose

sentencing judge is a home judge, and use the capacity of the judge-weeks whose judge is a traveling judge to

satisfy the target allocation that is not covered by the home judges for each county. The algorithm consists

of the following steps.

• Step 1. Generate a base judge schedule with η= 0.

• Step 2. For each judge-week, decide whether the judge is a home judge or a traveling judge using η

randomly.

• Step 3. For each judge-week whose judge is a home judge, assign her the same working county as in

the base judge schedule from Step 1. Let dtc be the uncovered target allocation by home judges for

county c.

• Step 4. For each judge-week whose judge is a traveling judge, let Sj = C \ {c|x∗jc > 0} be the set of

counties such that judge j can satisfy some of their uncovered demand when traveling from Step 3.

Randomly select county c∈ Sj with probability dtc/
∑

c∈Sj
dtc.

• If dtc is greater than the judge’s working time of this judge-week, meaning that this judge-week can

be fully used for the selected county, assign the selected county as the working county. Update dtc by

decreasing the judge’s working time of this judge-week.

• Else, we know that only part of the judge-week is needed to satisfy the target allocation from the

selected county. Assign the selected county to the judge-week, update the judge’s residual capacity by

setting dtc = 0, and repeat this step with the residual capacity of this judge-week.

A.2. Modifying the Convex Hulls

In this subsection, we modify the convex hulls derived in §4.4 by detecting and removing outliers from the

judge sentences, and extrapolating the convex hull for each judge.

Detecting Outliers. We detect outliers from the set of observations {(θiτi, si)|si > 0, i ∈ Ij} for judge j

using the Mahalanobis distance. Using generic notation, suppose we are given a two-dimensional dataset

where xi = (xi1, xi2) denotes the ith observation for i= 1, . . . , n. We detect the outliers using the following

steps.
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Table 5 Values for κj

Judge Number κj Judge Number κj

1 25.0 26 21.2
2 24.4 27 12.6
3 15.0 28 19.6
4 17.5 29 20.4
5 15.4 30 20.2
6 18.2 31 12.0
7 34.0 32 13.6
8 14.8 33 20.0
9 21.3 34 15.2
10 22.2 35 11.0
11 22.0 36 10.0
12 16.8 37 9.5
13 21.9 38 13.0
14 15.0 39 15.8
15 11.0 40 8.0
16 19.0 41 8.0
17 14.6 42 9.0
18 25.4 43 14.6
19 19.0 44 16.0
20 4.8 45 18.2
21 14.2 46 10.33
22 20.7 47 20.2
23 13.2 48 16.0
24 22.7 49 27.8
25 17.8 50 26.3

Step 1. Find the covariance matrix M between the two dimensions for the dataset.

Step 2. Find the center point of the dataset by taking the average value of each variable as

xc = (
1

n

n∑
i=1

xi1,
1

n

n∑
i=1

xi2).

Step 3. Compute the Mahalanobis Distance between each observation xi and the center point xc as

d2i = (xi−xc)
TM−1(xi−xc).

Step 4. Depending on the percentage of the observations that the user wants to detect as outliers,

choose a cutoff value m from the chi-squared distribution. Observation i is deemed an outlier if d2i >m.

We fix the threshold from the chi-squared distribution to be 10.6 for each judge, which leads to 3.44% of

observations being detected as outliers (and a range of 0%–6% among judges). The results of the outlier

detection for each judge appears in Fig. 15, where the header of each figure also shows the percentage of the

sentencing events that are detected as outliers for each judge.
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Figure 15 Outlier distribution among judges, where s is the expected sentence at plea bargain and θ̂τ̂ is the

expected sentence at trial. The number in parenthesis above each subfigure is the percentage of the

observations that are outliers.
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Figure 15 (Continued) Outlier distribution among judges, where s is the expected sentence at plea bargain and

θ̂τ̂ is the expected sentence at trial. The number in parenthesis above each subfigure is the percentage

of the observations that are outliers.
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Figure 15 (Continued) Outlier distribution among judges, where s is the expected sentence at plea bargain and

θ̂τ̂ is the expected sentence at trial. The number in parenthesis above each subfigure is the percentage

of the observations that are outliers.
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Figure 15 (Continued) Outlier distribution among judges, where s is the expected sentence at plea bargain and

θ̂τ̂ is the expected sentence at trial. The number in parenthesis above each subfigure is the percentage

of the observations that are outliers.
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Figure 15 (Continued) Outlier distribution among judges, where s is the expected sentence at plea bargain and

θ̂τ̂ is the expected sentence at trial. The number in parenthesis above each subfigure is the percentage

of the observations that are outliers.
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Table 6 Values for dc

County Number dc County Number dc

1 13.581 24 2.741
2 2.812 25 2.617
3 2.100 26 10.644
4 4.788 27 11.463
5 1.958 28 0.481
6 5.910 29 6.408
7 1.691 30 28.569
8 2.617 31 0.854
9 4.948 32 1.2816
10 0.552 33 11.606
11 2.207 34 13.635
12 6.177 35 1.086
13 6.835 36 3.115
14 3.969 37 0.837
15 4.058 38 2.083
16 23.211 39 2.848
17 2.011 40 2.599
18 1.780 41 1.050
19 4.343 42 1.299
20 27.270 43 5.589
21 3.097 44 1.371
22 2.812 45 0.374
23 19.010 46 5.020

Extrapolating the Convex Hulls Let Aj denote the convex hull generated by the origin (0,0) and the

observations from {(θ̂iτ̂i, si)|si > 0, i ∈ Ij} (Fig. 2 in the main text). To add the two artificial points, we let

I4j be the set of trial cases handled by judge j for j = 1, . . . , J and calculate the maximum expected sentence

length predicted for all defendants, including both plea bargains and trials, via θτ = maxi∈∪J
j=1

(Ij∪I4j )
θ̂iτ̂i.

The two artificial points are denoted by (θτ , ŝu) and (θτ , ŝ`), where ŝu and ŝ` are interpreted as the maximum

and minimum, respectively, plea offers that the judge allows for the defendant whose expected trial sentence

length is θτ .

Let A be the set of observations that forms the boundary of the convex hull Aj . To compute ŝu, we let

x1 be the observation in A with the largest sentence s, and x2 be the observation in A that is found by

traversing A in the counterclockwise direction starting from x1 (Fig. 16). We then set

ŝu = s1 +

(
s1− s2

θ̂1τ̂1− θ̂2τ̂2

)(
θτ − θ̂1τ̂1

)
,

which is the point where the line containing x1 and x2 intersects with the dashed vertical line in Fig. 16.
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Table 7 Judge assignment obtained by solving (2)-(5)

Judge Number Assigned counties (Percentage)

1 County 34 (100%)
2 County 37 (100%)
3 County 46 (100%)
4 County 13 (100%)
5 County 35 (100%)
6 County 45 (4.0%), County 12 (58.0%), County 1 (38.0%)
7 County 2 (100%)
8 County 6 (100%)
9 County 20 (100%)
10 County 44 (100%)
11 County 38 (100%)
12 County 21 (100%)
13 County 31 (100%)
14 County 23 (100%)
15 County 5 (100%)
16 County 35 (100%)
17 County 14 (100%)
18 County 16 (100%)
19 County 13 (100%)
20 County 4 (100%)
21 County 36 (100%)
22 County 43 (100%)
23 County 33 (100%)
24 County 36 (100%)
25 County 38 (100%)
26 County 16 (100%)
27 County 10 (100%)
28 County 30 (100%)
29 County 33 (100%)
30 County 39 (17.0%), County 26 (5.0%), County 24 (29.0%), County 25 (25.0%), County 40 (25.0%)
31 County 35 (100%)
32 County 3 (23.0%), County 20 (14.0%), County 41 (12.0%), County 4 (1.0%), County 9 (50.0%)
33 County 27 (100%)
34 County 30 (100%)
35 County 13 (100%)
36 County 20 (100%)
37 County 27 (100%)
38 County 1 (100%)
39 County 26 (100%)
40 County 39 (40.0%), County 17 (60.0%)
41 County 15 (100%)
42 County 42 (21.0%), County 4 (0.0%), County 26 (1.0%), County 8 (55.0%), County 32 (22.0%)
43 County 11 (100%)
44 County 29 (53.0%), County 26 (13.0%), County 19 (34.0%)
45 County 18 (100%)
46 County 22 (100%)
47 County 7 (100%)
48 County 23 (100%)
49 County 28 (100%)
50 County 11 (100%)

Similarly, to compute ŝ`, we let x3 be the observation in A with the smallest sentence s, and x4 be the

observation in A that is found by traversing A in the clockwise direction starting from x3 (Fig. 17), and set

ŝ` = s3 +

(
s3− s4

θ̂3τ̂3− θ̂4τ̂4

)(
θτ − θ̂3τ̂3

)
.
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Figure 16 The modified convex hull for judge j, which preserves the upper leniency threshold uj(·). This figure

is for illustration purposes and is not based on the data.

The modified convex hull for judge j, denoted by Am
j , is generated by the origin (0,0), the observations from

{(θ̂iτ̂i, si)|si > 0, i ∈ Ij}, and the two artificial observations (θτ , ŝu), and (θτ , ŝ`) (Fig. 17). Taken together,

the lower and upper leniency thresholds of judge j is given by the functions

`j(θ̂iτ̂i) = min
{
s
∣∣∣(θ̂iτ̂i, s)∈Am

j

}
,

uj(θ̂iτ̂i) = max
{
s
∣∣∣(θ̂iτ̂i, s)∈Am

j

}
.

The convex hull for each of the 50 judges appears in Fig. 18.

A.3. Choice of k in the Trial Cost Estimation

In this section, we describe how we choose k = 20 for the k−nearest neighbor method used to estimate the

trial cost. A value of k that is too small may overfit while a value of k that is too large may include distant

neighbors that introduce inaccuracies. Also, we hope to choose a k such that most of the defendants from

I2 and I4 have their trial cost imputed based on k neighbors. The 25th, 50th and 75th percentiles are 22,

362, and 5074 for S2, and 1, 132.5, and 869 for S4. These percentiles lead us to consider {10,15,20,25} as

candidate values for k.

To assess these candidate values, we compute the sentence based on our model for each of the 17,270

sentencing events in our dataset. That is, for each defendant i and his judge j(i) from the sentencing dataset,
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Figure 17 A modified convex hull, Am
j , for judge j, which preserves the judge’s upper and lower leniency thresh-

olds. This figure is for illustration purposes and is not based on the data.

we use §4.4 to estimate his incarceration probability pi, predict his expected trial sentence θ̂iτ̂i, estimate the

upper leniency level uj(i)(θ̂iτ̂i) of judge j(i) and estimate his trial cost cd(i) with k ∈ {10,15,20,25}, and

then determine his sentence length via

si(j(i)) = min
{
θ̂iτ̂i + cd(i), uj(i)(θ̂iτ̂i)

}
when θ̂iτ̂i ≤ uj(i)(θ̂iτ̂i), and send him to trial if θ̂iτ̂i < `j(i)(θ̂iτ̂i).

We conduct a simulation study following this process for different values of k, and consider the three

performance measures defined in §3.4 along with the fraction of cases that are resolved through trials.

Although all four values of k perform well, we choose k = 20, which is closest to the data for two of these

four performance measures (Table 8).

Table 8 Statistics from the sentencing dataset and simulation results with different
values of k in the trial cost estimation

Data k= 10 k= 15 k= 20 k= 25

Mean plea sentence
54.27 50.79 51.27 51.71 51.65

(for nonzero sentences)
Standard deviation of plea sentence 40.52 40.21 40.43 40.69 40.45

Percentage of trial cases 1.51% 2.10% 1.40% 1.49% 1.44%
Standard deviation across counties

11.74 12.55 12.61 12.52 13.36
(for nonzero sentences)
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Figure 18 Judge convex hull with outliers removed, where s is the expected sentence at plea bargain and θ̂τ̂ is

the expected sentence at trial.
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Figure 18 (Continued) Judge convex hull with outliers removed, where s is the expected sentence at plea bargain

and θ̂τ̂ is the expected sentence at trial.
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Figure 18 (Continued) Judge convex hull with outliers removed, where s is the expected sentence at plea bargain

and θ̂τ̂ is the expected sentence at trial.
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Figure 18 (Continued) Judge convex hull with outliers removed, where s is the expected sentence at plea bargain

and θ̂τ̂ is the expected sentence at trial.
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Figure 18 (Continued) Judge convex hull with outliers removed, where s is the expected sentence at plea bargain

and θ̂τ̂ is the expected sentence at trial.
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Table 9 Regression results to predict mean processing times

coef std err t P> |t| [0.025 0.975]

Intercept 1.3421 0.755 1.777 0.077 -0.147 2.831
C(County)[T.County 6] -0.4733 0.977 -0.485 0.628 -2.398 1.451
C(County)[T.County 45] -0.4664 1.152 -0.405 0.686 -2.738 1.805
C(County)[T.County 33] -0.0304 0.954 -0.032 0.975 -1.911 1.850
C(County)[T.County 31] 0.2318 1.306 0.177 0.859 -2.343 2.806
C(County)[T.County 7] -0.5174 1.152 -0.449 0.654 -2.787 1.753
C(County)[T.County 36] 0.3841 0.906 0.424 0.672 -1.402 2.170
C(County)[T.County 13] -0.5385 0.946 -0.569 0.570 -2.403 1.326
C(County)[T.County 28] -0.5686 1.152 -0.493 0.622 -2.840 1.703
C(County)[T.County 16] 0.6730 0.870 0.774 0.440 -1.041 2.387
C(County)[T.County 3] -0.5891 1.069 -0.551 0.582 -2.697 1.519
C(County)[T.County 44] 1.5773 1.152 1.369 0.172 -0.693 3.847
C(County)[T.County 38] -0.0326 1.012 -0.032 0.974 -2.027 1.962
C(County)[T.County 22] 0.1647 1.012 0.163 0.871 -1.829 2.158
C(County)[T.County 11] -0.3337 0.945 -0.353 0.724 -2.197 1.530
C(County)[T.County 39] 0.1713 0.973 0.176 0.860 -1.747 2.090
C(County)[T.County 42] 0.1987 1.012 0.196 0.845 -1.796 2.193
C(County)[T.County 46] -0.7331 1.074 -0.682 0.496 -2.851 1.385
C(County)[T.County 17] 0.3225 1.152 0.280 0.780 -1.949 2.594
C(County)[T.County 35] -0.1665 1.068 -0.156 0.876 -2.271 1.938
C(County)[T.County 34] 0.6753 0.986 0.685 0.494 -1.269 2.620
C(County)[T.County 15] -0.1267 1.013 -0.125 0.901 -2.124 1.870
C(County)[T.County 20] 0.3506 0.914 0.384 0.702 -1.451 2.153
C(County)[T.County 29] -0.0127 0.975 -0.013 0.990 -1.934 1.909
C(County)[T.County 10] -0.4797 1.067 -0.450 0.653 -2.583 1.623
C(County)[T.County 27] -0.1582 0.913 -0.173 0.863 -1.958 1.641
C(County)[T.County 41] -0.6377 1.152 -0.554 0.580 -2.908 1.632
C(County)[T.County 4] -0.0218 0.946 -0.023 0.982 -1.886 1.843
C(County)[T.County 2] 0.9968 1.067 0.935 0.351 -1.105 3.099
C(County)[T.County 9] 0.2133 0.974 0.219 0.827 -1.706 2.133
C(County)[T.County 18] -0.8087 1.012 -0.799 0.425 -2.803 1.186
C(County)[T.County 26] -0.3238 0.894 -0.362 0.717 -2.085 1.437
C(County)[T.County 21] -0.2242 1.067 -0.210 0.834 -2.327 1.878
C(County)[T.County 24] 1.1038 1.067 1.034 0.302 -0.999 3.207
C(County)[T.County 37] -0.0203 1.152 -0.018 0.986 -2.291 2.251
C(County)[T.County 8] -0.0319 1.012 -0.032 0.975 -2.026 1.962
C(County)[T.County 14] -0.6984 0.974 -0.717 0.474 -2.617 1.220
C(County)[T.County 43] 0.2391 0.946 0.253 0.801 -1.625 2.103
C(County)[T.County 19] -0.0200 0.974 -0.021 0.984 -1.939 1.899
C(County)[T.County 30] 1.1201 0.878 1.276 0.203 -0.610 2.850
C(County)[T.County 32] -0.3813 1.152 -0.331 0.741 -2.651 1.889
C(County)[T.County 23] -0.5872 0.942 -0.623 0.534 -2.443 1.269
C(County)[T.County 12] -0.0360 0.946 -0.038 0.970 -1.900 1.828
C(County)[T.County 25] 0.0323 1.012 0.032 0.975 -1.961 2.026
C(County)[T.County 40] 0.0330 0.946 0.035 0.972 -1.831 1.897
Trial 0.8393 0.066 12.626 0.000 0.708 0.970
Plea 0.0178 0.002 10.795 0.000 0.015 0.021
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Table 10 Regression results to predict defendant incarceration probability

coef std err z P> |z| [0.025 0.975]

Intercept 5.4793 0.598 9.156 0.000 4.306 6.652
C(OffenseSeriousness)[T.five] -1.0464 0.531 -1.969 0.049 -2.088 -0.005
C(OffenseSeriousness)[T.four] -1.8369 0.485 -3.785 0.000 -2.788 -0.886
C(OffenseSeriousness)[T.one] -3.8575 0.492 -7.840 0.000 -4.822 -2.893
C(OffenseSeriousness)[T.seven] -0.1329 0.742 -0.179 0.858 -1.586 1.320
C(OffenseSeriousness)[T.six] -0.6906 0.655 -1.054 0.292 -1.975 0.593
C(OffenseSeriousness)[T.three] -2.9696 0.481 -6.179 0.000 -3.912 -2.028
C(OffenseSeriousness)[T.two] -3.4596 0.483 -7.157 0.000 -4.407 -2.512
C(CommitmentScore)[T.eleven] -0.1026 0.563 -0.182 0.855 -1.207 1.002
C(CommitmentScore)[T.five] -0.0849 0.348 -0.244 0.807 -0.766 0.596
C(CommitmentScore)[T.four] 0.0748 0.326 0.229 0.819 -0.565 0.714
C(CommitmentScore)[T.nine] 0.0249 0.505 0.049 0.961 -0.965 1.014
C(CommitmentScore)[T.one] -1.7656 0.310 -5.697 0.000 -2.373 -1.158
C(CommitmentScore)[T.seven] -0.1487 0.401 -0.371 0.711 -0.934 0.637
C(CommitmentScore)[T.six] 0.2599 0.378 0.688 0.492 -0.481 1.001
C(CommitmentScore)[T.ten] -0.7402 0.580 -1.277 0.202 -1.876 0.396
C(CommitmentScore)[T.three] -0.3092 0.316 -0.977 0.329 -0.929 0.311
C(CommitmentScore)[T.twelve] -0.3866 0.400 -0.966 0.334 -1.171 0.398
C(CommitmentScore)[T.two] -0.8926 0.311 -2.868 0.004 -1.503 -0.283
OffenseType[T.Other] -0.2961 0.072 -4.134 0.000 -0.436 -0.156
OffenseType[T.Property] -0.6523 0.059 -11.042 0.000 -0.768 -0.536
OffenseType[T.Violent] -0.1157 0.088 -1.318 0.187 -0.288 0.056
CrimHist[T.minimal] -3.0625 0.172 -17.769 0.000 -3.400 -2.725
CrimHist[T.moderate] -0.4687 0.177 -2.645 0.008 -0.816 -0.121
CrimHist[T.none] -3.4818 0.175 -19.930 0.000 -3.824 -3.139
CrimHist[T.voluminous] -0.1359 0.202 -0.672 0.502 -0.532 0.261
MandatoryMinimum 3.5936 0.423 8.496 0.000 2.765 4.423
Male 0.5332 0.065 8.221 0.000 0.406 0.660
Black 0.5576 1.168 0.477 0.633 -1.732 2.848
Black:C(OffenseSeriousness)[T.five] 0.0210 1.198 0.017 0.986 -2.328 2.370
Black:C(OffenseSeriousness)[T.four] -0.8221 1.158 -0.710 0.478 -3.092 1.447
Black:C(OffenseSeriousness)[T.one] -1.2033 1.161 -1.037 0.300 -3.479 1.072
Black:C(OffenseSeriousness)[T.seven] -1.8279 1.325 -1.380 0.168 -4.424 0.768
Black:C(OffenseSeriousness)[T.six] -0.7504 1.384 -0.542 0.588 -3.464 1.963
Black:C(OffenseSeriousness)[T.three] -0.6751 1.156 -0.584 0.559 -2.941 1.591
Black:C(OffenseSeriousness)[T.two] -0.4628 1.155 -0.401 0.689 -2.726 1.800
Black:CrimHist[T.minimal] 0.6749 0.204 3.303 0.001 0.274 1.075
Black:CrimHist[T.moderate] 0.1766 0.211 0.835 0.404 -0.238 0.591
Black:CrimHist[T.none] 0.6827 0.207 3.298 0.001 0.277 1.088
Black:CrimHist[T.voluminous] 0.0558 0.243 0.230 0.818 -0.420 0.532
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Table 11 Regression results to predict defendant probability of conviction at trials

coef std err z P> |z| [0.025 0.975]

Intercept -1.4472 1.99e+06 -7.29e-07 1.000 -3.89e+06 3.89e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.five] -260.9821 1.4e+06 -0.000 1.000 -2.75e+06 2.75e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.four] -225.9694 1.83e+06 -0.000 1.000 -3.59e+06 3.59e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.one] -192.6918 1.01e+06 -0.000 1.000 -1.98e+06 1.98e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.seven] 31.9071 9.67e+05 3.3e-05 1.000 -1.89e+06 1.89e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.six] -135.3771 7e+05 -0.000 1.000 -1.37e+06 1.37e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.three] -83.3723 1.1e+06 -7.61e-05 1.000 -2.15e+06 2.15e+06
C(OffenseSeriousness, levels=all offense seriousness)[T.two] -248.9797 1.91e+06 -0.000 1.000 -3.75e+06 3.75e+06
C(CommitmentScore, levels=all commitment score)[T.eleven] -0.4994 5.81e+05 -8.6e-07 1.000 -1.14e+06 1.14e+06
C(CommitmentScore, levels=all commitment score)[T.five] -11.5056 6.15e+05 -1.87e-05 1.000 -1.21e+06 1.21e+06
C(CommitmentScore, levels=all commitment score)[T.four] 1.8214 4.08e+05 4.47e-06 1.000 -7.99e+05 7.99e+05
C(CommitmentScore, levels=all commitment score)[T.nine] 44.5600 1.03e+06 4.31e-05 1.000 -2.03e+06 2.03e+06
C(CommitmentScore, levels=all commitment score)[T.one] -1.8799 3.22e+05 -5.84e-06 1.000 -6.31e+05 6.31e+05
C(CommitmentScore, levels=all commitment score)[T.seven] -53.9157 9.81e+05 -5.49e-05 1.000 -1.92e+06 1.92e+06
C(CommitmentScore, levels=all commitment score)[T.six] -0.2755 3.46e+05 -7.97e-07 1.000 -6.78e+05 6.78e+05
C(CommitmentScore, levels=all commitment score)[T.ten] 2.405e-13 6.36e-09 3.78e-05 1.000 -1.25e-08 1.25e-08
C(CommitmentScore, levels=all commitment score)[T.three] 12.2886 9.25e+05 1.33e-05 1.000 -1.81e+06 1.81e+06
C(CommitmentScore, levels=all commitment score)[T.twelve] -0.5905 3.28e+05 -1.8e-06 1.000 -6.43e+05 6.43e+05
C(CommitmentScore, levels=all commitment score)[T.two] 19.3078 3.23e+05 5.98e-05 1.000 -6.33e+05 6.33e+05
OffenseType[T.Other] -42.8970 3.96e+04 -0.001 0.999 -7.77e+04 7.77e+04
OffenseType[T.Property] 89.0265 7.55e+04 0.001 0.999 -1.48e+05 1.48e+05
OffenseType[T.Violent] 23.2533 3.92e+04 0.001 1.000 -7.69e+04 7.69e+04
CrimHist[T.minimal] 97.0734 9.23e+05 0.000 1.000 -1.81e+06 1.81e+06
CrimHist[T.moderate] 100.3873 9.38e+05 0.000 1.000 -1.84e+06 1.84e+06
CrimHist[T.none] 91.8205 8.6e+05 0.000 1.000 -1.68e+06 1.68e+06
CrimHist[T.voluminous] 121.0368 7.33e+05 0.000 1.000 -1.44e+06 1.44e+06
MandatoryMinimum -86.0137 1.76e+06 -4.9e-05 1.000 -3.44e+06 3.44e+06
Male 176.9426 1.14e+05 0.002 0.999 -2.23e+05 2.24e+05
Black -32.4115 1.02e+06 -3.17e-05 1.000 -2e+06 2e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.five] 353.5097 7.09e+05 0.000 1.000 -1.39e+06 1.39e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.four] 71.9624 5.33e+05 0.000 1.000 -1.05e+06 1.05e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.one] -192.6918 1.01e+06 -0.000 1.000 -1.98e+06 1.98e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.seven] 68.8902 5.19e+05 0.000 1.000 -1.02e+06 1.02e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.six] 157.8687 9.11e+05 0.000 1.000 -1.78e+06 1.79e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.three] 9.5656 8.84e+05 1.08e-05 1.000 -1.73e+06 1.73e+06
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.two] 161.8671 3.86e+05 0.000 1.000 -7.56e+05 7.56e+05
Black:CrimHist[T.minimal] 29.5136 1.03e+06 2.87e-05 1.000 -2.01e+06 2.01e+06
Black:CrimHist[T.moderate] -100.0981 1.3e+06 -7.7e-05 1.000 -2.55e+06 2.55e+06
Black:CrimHist[T.none] -145.9120 1.01e+06 -0.000 1.000 -1.98e+06 1.98e+06
Black:CrimHist[T.voluminous] -109.9934 9.05e+05 -0.000 1.000 -1.77e+06 1.77e+06
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Table 12 Regression results to predict defendant sentence upon conviction at trials

coef std err z P> |z| [0.025 0.975]

Intercept 6.3967 0.285 22.422 0.000 5.838 6.956
C(OffenseSeriousness, levels=all offense seriousness)[T.five] -0.6401 0.197 -3.250 0.001 -1.026 -0.254
C(OffenseSeriousness, levels=all offense seriousness)[T.four] -0.9893 0.192 -5.162 0.000 -1.365 -0.614
C(OffenseSeriousness, levels=all offense seriousness)[T.one] 3.092e-15 8.38e-16 3.688 0.000 1.45e-15 4.73e-15
C(OffenseSeriousness, levels=all offense seriousness)[T.seven] -0.4552 0.121 -3.766 0.000 -0.692 -0.218
C(OffenseSeriousness, levels=all offense seriousness)[T.six] -0.3651 0.264 -1.381 0.167 -0.883 0.153
C(OffenseSeriousness, levels=all offense seriousness)[T.three] -1.5581 0.158 -9.843 0.000 -1.868 -1.248
C(OffenseSeriousness, levels=all offense seriousness)[T.two] -1.8983 0.212 -8.955 0.000 -2.314 -1.483
C(CommitmentScore, levels=all commitment score)[T.eleven] 0.4391 0.236 1.858 0.063 -0.024 0.902
C(CommitmentScore, levels=all commitment score)[T.five] -0.0753 0.203 -0.371 0.710 -0.473 0.322
C(CommitmentScore, levels=all commitment score)[T.four] 0.3451 0.185 1.866 0.062 -0.017 0.708
C(CommitmentScore, levels=all commitment score)[T.nine] 0.6666 0.440 1.514 0.130 -0.196 1.529
C(CommitmentScore, levels=all commitment score)[T.one] -0.1567 0.144 -1.092 0.275 -0.438 0.125
C(CommitmentScore, levels=all commitment score)[T.seven] 0.2551 0.171 1.491 0.136 -0.080 0.590
C(CommitmentScore, levels=all commitment score)[T.six] 0.1648 0.153 1.076 0.282 -0.135 0.465
C(CommitmentScore, levels=all commitment score)[T.ten] -4.851e-16 3.18e-16 -1.527 0.127 -1.11e-15 1.37e-16
C(CommitmentScore, levels=all commitment score)[T.three] -0.1046 0.153 -0.682 0.495 -0.405 0.196
C(CommitmentScore, levels=all commitment score)[T.twelve] 0.3219 0.152 2.122 0.034 0.025 0.619
C(CommitmentScore, levels=all commitment score)[T.two] 0.0281 0.148 0.190 0.849 -0.262 0.318
OffenseType[T.Other] -0.5583 0.141 -3.949 0.000 -0.835 -0.281
OffenseType[T.Property] -0.1477 0.084 -1.763 0.078 -0.312 0.016
OffenseType[T.Violent] 0.3120 0.066 4.748 0.000 0.183 0.441
CrimHist[T.minimal] -0.6490 0.230 -2.822 0.005 -1.100 -0.198
CrimHist[T.moderate] -0.6713 0.217 -3.095 0.002 -1.096 -0.246
CrimHist[T.none] -0.4947 0.213 -2.319 0.020 -0.913 -0.077
CrimHist[T.voluminous] -0.3147 0.235 -1.342 0.180 -0.774 0.145
MandatoryMinimum -0.1338 0.080 -1.681 0.093 -0.290 0.022
Male 0.1590 0.095 1.674 0.094 -0.027 0.345
Black -0.3301 0.219 -1.510 0.131 -0.759 0.098
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.five] -0.6001 0.211 -2.837 0.005 -1.015 -0.186
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.four] -0.0223 0.216 -0.103 0.918 -0.446 0.401
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.one] 3.109e-16 1.67e-16 1.866 0.062 -1.57e-17 6.38e-16
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.seven] -0.2301 0.139 -1.653 0.098 -0.503 0.043
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.six] -0.5742 0.368 -1.561 0.119 -1.295 0.147
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.three] -0.0195 0.168 -0.116 0.908 -0.350 0.311
Black:C(OffenseSeriousness, levels=all offense seriousness)[T.two] 0.1410 0.215 0.657 0.511 -0.279 0.562
Black:CrimHist[T.minimal] 0.4260 0.245 1.742 0.081 -0.053 0.905
Black:CrimHist[T.moderate] 0.5853 0.231 2.536 0.011 0.133 1.038
Black:CrimHist[T.none] 0.3383 0.229 1.480 0.139 -0.110 0.786
Black:CrimHist[T.voluminous] 0.2712 0.252 1.076 0.282 -0.223 0.765
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Figure 19 Mean plea sentence length decided by each judge based on all 17,516 defendants from the sentencing

dataset and the corresponding convex hull.
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Figure 20 Histogram of the estimated cost (in months) of going to trial, cd(i), for (a) i∈ I1 (5731 cases, mean

= -56.4, standard deviation = 69.5), (b) i∈ I2 (153 cases, mean = 78.1, standard deviation = 78.3),

(c) i∈ I3 (10,920 cases, mean = -22.4, standard deviation = 101.6), and (d) i∈ I4 (258 cases, mean

= -292.8, standard deviation = 169.3).
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Figure 21 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks and

travel probability η ∈ {0,0.1, . . . ,0.9}, with a fixed judge utilization ρ= 0.5.
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Figure 22 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks and the

judge utilization ρ∈ {0.5,0.7,0.9,0.99}, with a fixed travel probability η= 0.5.
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Figure 23 Performance measures versus the travel probability η ∈ {0,0.1, . . . ,0.9} and the judge utilization ρ ∈

{0.5,0.7,0.9,0.99}, with a fixed shopping window r= 4 weeks.
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Figure 24 The defendants characterized by (θ̂iτ̂i, si) and the constructed convex hulls for Judges 15 and 36.
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Figure 25 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks and the

number of judges k ∈ {1,2,3,4,5,6,8,10,15,20} in the urban model, with the judge utilization fixed

at ρ= 0.5.
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Figure 26 Performance measures versus the shopping window r ∈ {1,2,3,4,5,6,8,10,14,18,22,25} weeks and the

judge utilization ρ∈ {0.5,0.7,0.9,0.99} in the urban model, with the number of judges fixed at k= 4.
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Figure 27 Performance measures versus the number of judges k ∈ {1,2,3,4,5,6,8,10,15,20} and the judge uti-

lization ρ∈ {0.5,0.7,0.9,0.99} in the urban model, with the shopping window fixed at r= 4 weeks.


