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Abstract. We consider a matching market where buyers and sellers arrive according to in-
dependent Poisson processes at the same rate and independently abandon the market if not
matched after an exponential amount of time with the same mean. In this centralized mar-
ket, the utility for the system manager from matching any buyer and any seller is a general
random variable. We consider a sequence of systems indexed by nwhere the arrivals in the
nth system are sped up by a factor of n. We analyze two families of one-parameter policies:
the population threshold policy immediately matches an arriving agent to its best available
mate only if the number of mates in the system is above a threshold, and the utility thresh-
old policymatches an arriving agent to its best available mate only if the corresponding util-
ity is above a threshold. Using an asymptotic fluid analysis of the two-dimensional Markov
process of buyers and sellers, we show that when the matching utility distribution is light-
tailed, the population threshold policy with threshold n

lnn is asymptotically optimal among
all policies that make matches only at agent arrival epochs. In the heavy-tailed case, we
characterize the optimal threshold level for both policies. We also study the utility threshold
policy in an unbalanced matching market with heavy-tailed matching utilities and find that
the buyers and sellers have the same asymptotically optimal utility threshold. To illustrate
our theoretical results, we use extreme value theory to derive optimal thresholds when the
matching utility distribution is exponential, uniform, Pareto, and correlated Pareto. In gen-
eral, we find that as the right tail of the matching utility distribution gets heavier, the thresh-
old level of each policy (and hence market thickness) increases, as does the magnitude by
which the utility threshold policy outperforms the population threshold policy.
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1. Introduction
We consider a symmetric centralized dynamic matching
market (the asymmetric case is also discussed for heavy-
tailed utilities). Two types of agents, which we call
buyers and sellers, arrive to the market according to in-
dependent Poisson processes with rate λ, and each agent
abandons (i.e., exits) the market after an independent ex-
ponential amount of time with rate η if he has not yet
been matched. The utility of a match between any buyer
and any seller is a general random variable. In this

centralized model, the agents make no explicit decisions,
and at the time of an agent arrival, the system manager
observes all matching utilities between the arrival and
all potential mates (e.g., sellers if the arrival is a buyer)
who are currently in the market. Using information
about the number of buyers and sellers and their match-
ing utilities, the system manager decides when to make
matches and which agents to match.

Centralized dynamic matching markets occur in
settings such as organ transplants, public housing,
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labor markets, and various online platforms. In prac-
tice, matching utilities include information about tis-
sue type matching and the geographical distance be-
tween the donor and the recipient for organ
transplants; the location and desirability of the resi-
dence and the distance between the residence and the
applicant’s current residence in public housing; and
the match between the needs of the employer and the
experience and skills of the job applicant in the labor
market. This information can lead to wide variations
in the matching utilities between different buyers and
sellers, and our goal is to understand how best to ex-
ploit this variation when managing the market. How-
ever, in our idealized model, the details about this in-
formation are suppressed (e.g., we do not use
covariates describing the agents to help make deci-
sions) and aggregated into the matching utility distri-
bution between buyers and sellers.

A key issue in centralized dynamic matching mar-
kets is to find the optimal market thickness; that is,
rather than match a new agent upon its arrival, it may
be preferable to place the arriving agent in the market
and allow more agents to arrive in the hope of making
a higher-utility match in the future. In our model, we
aim to maximize the long-run expected average utility
rate (i.e., utility of matches per unit time) of all
matches. Although we do not explicitly include agent
waiting costs, a strategy that forces agents to wait too
long for the market to thicken can backfire because
agents may abandon the market before they are
matched.

Due to the challenging nature of this problem, we
resort to asymptotic methods. We consider a sequence
of systems where the arrival rates in the nth system
are multiplied by n > 0. In the absence of any match-
ing, the number of agents of each type would be pre-
cisely the number of customers in an M=M=∞ queue,
which would be O(n) (a generic function f(n) is O(n) if
limsupn→∞

f (n)
n ≤ c for some finite constant c > 0). We

use two types of asymptotic methods: one is a fluid
analysis of the two-dimensional Markov process for
the number of buyers and sellers in the market when
the arrival rates are large. The other is extreme value
theory (Gumbel 1958, Galambos 1978) and regularly
varying functions (Resnick 1987), which are used be-
cause the utility of a match under the policies we con-
sider is the maximum of a (typically) large number of
random variables. In our study, a fluid analysis of the
queueing process is sufficient to derive our results
and leads to a decoupling of the extremal behavior of
the utilities and the dynamics of the queueing system.
This decoupling in turn allows us to consider correlat-
ed utilities, which is a feature that is lacking in other
dynamic matching models.

In this asymptotic regime, we compute an upper
bound on the utility rate of any policy that makes

matches only at agent arrival epochs and compare it
to the utility rate of two families of threshold poli-
cies:the population threshold policy and the utility
threshold policy. Under the population threshold poli-
cy, the system manager immediately matches an ar-
riving agent to the available mate with the highest
matching utility (at which point, the arriving agent
and its matched mate exit the system and their match-
ing utility is collected by the system manager) only if
the number of available mates in the market exceeds a
specified threshold; otherwise, the arriving agent is
not immediately matched and is instead placed in the
market. Under the utility threshold policy, the arriv-
ing agent is immediately matched to its best available
mate only if the corresponding matching utility ex-
ceeds a specified threshold.

Although possibly not optimal among all policies,
these single-parameter policies are easy to implement
and describe and allow for quite explicit results. In
fact, the population threshold policy can be imple-
mented without ever calculating the utility of individ-
ual matches (although the probability distribution of
matches is required to compute the optimal thresh-
old): all that is required is a ranked ordering of the
possible matches. As we will discuss, the utility
threshold policy outperforms the population thresh-
old policy in our examples, but the latter policy is as-
ymptotically optimal in certain cases. Another natural
class of policies to consider is a batching policy, where
the system manager—after a certain amount of time
or after a certain number of buyers and/or sellers col-
lect in the market—matches a set of agents. This ap-
proach requires an optimization algorithm to perform
the matching and hence is more computationally de-
manding than our two threshold policies. Moreover,
if there are many agents who abandon quickly after
arrival, as in some call centers (e.g., figure 20 in Gans
et al. 2003), a batching policy may not be very robust
in practice. Nonetheless, in Section 7 we consider a
batch-and-match policy that periodically (with an as-
ymptotically optimal time window) optimally
matches all agents on the thinner side of the market
with an equal number of agents randomly selected
from the thicker side of the market.

1.1. Preview of Results
In extreme value theory, the limiting distribution of
the maximum of many random variables can be one
of three types, loosely based on whether the underly-
ing distribution of these random variables has an ex-
ponential right tail, has a heavier (e.g., power law)
right tail, or is bounded from above, and our results
are qualitatively different in each case. Although our
main results are couched in terms of regularly varying
functions, we preview our results with three canonical
examples (Table 1)—one from each of the three
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domains of attraction—in the symmetric case, which
are analyzed in Section 10 of the online appendix.
When matching utilities have an exponential distribu-
tion, the population threshold policy with a threshold
of n

lnn is asymptotically optimal with a utility rate that
is O(n lnn) and twice as large as the utility rate of the
greedy policy—that is, the population threshold poli-
cy with a threshold of zero—in the limit. When the
matching utilities have a Pareto (c,β) distribution with
shape parameter β > 1 (and hence a finite mean), the
population threshold λ

η(1+β)n is asymptotically optimal.
Although the utility rate of this threshold policy does
not converge to the loose upper bound in this case,
the utility rate and the upper bound are both
O(n1+1=β), whereas the utility rate under the greedy
policy is only O(n1+1=(2β)). When the matching utilities
have a uniform distribution, the greedy policy is as-
ymptotically optimal (i.e., 0 is an asymptotically opti-
mal population threshold) and the optimal utility rate
is O(n).

In the Pareto case, the utility threshold 0:763
����
πn

√
is

asymptotically optimal when c � 1 and β � 2, and the
corresponding utility rate is O(n1+1=β). This asymptotic
utility rate is computed explicitly, and it is shown to
be larger than the utility rate of the asymptotically op-
timal population threshold policy. In the exponential
and uniform cases, where we have already identified
an asymptotically optimal policy, we use heuristics to
compute, in the prelimit, utility threshold policies that
are consistent with the asymptotically optimal de-
scriptions but outperform in simulation results the
population threshold policy. We also consider a posi-
tively correlated Pareto case in Section 10.4 of the on-
line appendix, and show that the asymptotically opti-
mal population threshold is independent of the
correlation, the asymptotically optimal utility thresh-
old decreases as the correlation increases, and the
utility rates of both threshold policies decrease as the
correlation increases. In Section 6, we consider an un-
balanced market, where buyers have a different

arrival rate and abandonment rate than sellers, and
we analyze the utility threshold policy in the heavy-
tailed case. Surprisingly, although we allow the
buyers and sellers to have a different utility threshold,
we find that they have the same asymptotically opti-
mal utility threshold. Finally, we show in Section 7
that in the Pareto case, the utility threshold policy out-
performs the batch-and-match policy.

Taken together, the optimal amount of patience—
and hence market thickness—increases with the right
tail of the matching utility distribution, as does the op-
timal utility rate and the performance gap between
the utility threshold policy and the population thresh-
old policy. Our limited analysis of an unbalanced
market suggests that the optimal market thickness
also increases with the amount of imbalance. In our
particular model of correlation, increased positive cor-
relation among matching utilities decreases the benefit
of increased patience (i.e., the system manager is less
likely to observe a future utility that is much better
than the best existing utility), whereas the cost of in-
creased patience (i.e., the number of abandonments) is
independent of the correlation. Among the three one-
parameter policies considered here, the utility thresh-
old policy displays the best performance.

1.2. Related Work
Matching markets is a large and active area of re-
search, and we restrict our review to centralized dy-
namic markets. Although our model lacks the contex-
tual richness of some of the models for specific types
of markets, the most distinctive feature of our model
is the generality of the matching utilities, which al-
lows us to understand how the right tail of the match-
ing utility distribution impacts the optimal thickness
of the market (Table 1). In contrast, much of the recent
work in dynamic (centralized or decentralized) match-
ing markets, either via two-type agents (e.g., easy-to-
match or hard-to-match agents, or matches that are
preferred or nonpreferred; Baccara et al. 2020, Ashlagi

Table 1. Summary of Results for the Three Canonical Cases in Section 10 of the Online Appendix

Matching utility distribution

Policy Exponential(ν) Pareto(c, shape β > 1) Uniform(a,b)
Upper bound U+

n ~ λ
ν n lnn U+

n �O(n1+1=β) U+
n ~ λbn

Greedy policy Ug
n ~ λ

2νn lnn Ug
n �O(n1+1=(2β)) Asymptotically optimal

Population threshold policy
with threshold zn

z∗n � n
lnn is asymptotically optimal z∗n � λ

η(1+β)n

Up
n(z∗n) �O(n1+1=β) but no

convergence to upper bound
unless β→∞

z∗n � 0 is asymptotically optimal

Utility threshold policy with
threshold vn

Heuristic

v∗n �
lnn−ln lnn−ln ln ( 2λlnn

λlnn+η)
ν

v∗n � 1:353
��
n

√
when c � 1, β � 2;
Uu

n(v∗n) �O(n1+1=β)

heuristic v∗n � a+
(b− a) 1����

2nπ
√ + 1

2

( )η
λ

��
π
2n

√

Note. U+
n , U

g
n, U

p
n(zn), and Uu

n(vn) are, respectively, the upper bound on the utility rate for any arrival-only policy, the utility rate for the greedy
policy, the utility rate for the population threshold policy with threshold zn, and the utility rate for the utility threshold policy with threshold vn,
all for the nth system.
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et al. 2018a, 2019) or a compatibility network (Ashlagi
et al. 2013, Anderson et al. 2017, Varma et al. 2019, Ak-
barpour et al. 2020) essentially lead to dichotomous
outcomes for a match. Exceptions include Ünver
(2010), who considers blood type compatibility for a
dynamic kidney exchange model, Emek et al. (2016)
and Ashlagi et al. (2017b), who consider minimizing
mismatch costs when agents arrive on a finite metric
space in a nonbipartite and bipartite setting, respec-
tively, and Ashlagi et al. (2018b), who allow general
matching utilities in a discrete time model with a
constant time until abandonment. They perform a
primal-dual analysis to derive competitive ratios for
algorithms when there is no prior information about
the match values or arrival times.

The analysis of multiclass matching queues is an ac-
tive area. Hu and Zhou (2021) consider a discrete-
time, multiclass, discounted variant of our problem
that includes waiting costs. They show that the opti-
mal policy is of threshold form under vertical and uni-
directionally horizontal differentiated types. Ding et al.
(2021) allow the matching utilities to depend on the
class of buyer and seller and perform a fluid analysis
of a greedy policy, and Bušić and Meyn (2015) mini-
mize linear holding costs in a system without class-
dependent matching utilities or abandonment but
also find that matches are not made until there is a
sufficient number of agents in the market (see Moyal
and Perry 2017, where these systems are referred to as
matching queues, for other references to these types of
models).

Gurvich and Ward (2014) and Nazari and Stolyar
(2019) study a control problem in a more general set-
ting than the aforementioned studies, where arriving
customers wait to be matched to agents of other clas-
ses. Gurvich and Ward (2014) minimize cumulative
holding costs over a finite horizon and show that a
myopic discrete-review matching algorithm is asymp-
totically optimal. Nazari and Stolyar (2019) maximize
the long-run average revenue rate subject to maintain-
ing stable queues and construct a greedy primal-dual
approach that is asymptotically optimal. It is difficult
to compare this powerful result to our results, given
that we assume abandonment rather than stability,
and we have a single-class model with general re-
wards rather than a multiclass model with class-
dependent rewards.

Two other studies consider fluid and diffusion lim-
its of simplified versions of our model where either a
match occurs with a certain probability for each
buyer-seller pair (Büke and Chen 2017) or everyone
matches when there is an available mate (Liu et al.
2015), which corresponds to our greedy policy but
with a deterministic utility (i.e., a matching utility dis-
tribution that is a point mass at one value). In both
cases, the system state reduces to a one-dimensional

quantity (the number of sellers minus the number of
buyers), whereas our model requires a two-
dimensional state space for a nongreedy policy.

Perhaps the most closely related paper is Mertiko-
poulos et al. (2020), which also considers a symmetric
centralized dynamic matching market. Compared
with our study, they assume independent exponential
mismatch costs rather than general matching utilities,
consider waiting times rather than abandonment, and
are interested in minimizing the sum of mismatch and
waiting costs over a finite horizon. They consider a
class of policies that make the kth match (which has
the lowest mismatch cost among possible matches)
when the short side of the market grows to a certain
one-parameter function of k. They analyze the perfor-
mance of the policy (using the celebrated π2=6 result
for the expected minimum weight matching due to
Mezard and Parisi 1987 and rigorously proved by Al-
dous 2001) under various values of the parameter and
also identify a policy that balances the mismatch and
waiting costs. It is difficult to draw qualitative com-
parisons between our results for exponential utilities
(which incorporate abandonments) and their results
(which incorporate waiting costs); indeed, our ap-
proach depends on the right tail of the exponential
distribution via extreme value theory, whereas their
approach depends on the left tail of the exponential
distribution via minimum weighted matching.

We briefly mention other works that are only pe-
ripherally related. Originally motivated by public
housing (Kaplan 1988), Caldentey et al. (2009) and
Adan and Weiss (2012) consider infinite bipartite
matching of servers and customers under the first-
come first-served policy. There is also a stream of
work in online bipartite matching in an adversarial
setting (Karp et al. 1990), where agents do not wait in
the market if they are not matched immediately. Final-
ly, there is a body of literature (e.g., Duffie et al. 2018
and references therein) that uses the law of large num-
bers to analyze the performance of static and dynamic
matching models used in economics, finance, and ge-
netics, but these models are descriptive rather than
prescriptive.

1.3. Organization
The paper is organized as follows. We formulate the
model in Section 2 and state our main theoretical re-
sults in Section 3, which are proved in Section 9 of the
online appendix. After analyzing a greedy policy in
Section 4, we apply our main results to specific match-
ing utility distributions in Section 10 of the online ap-
pendix and assess the accuracy of these results in a
simulation study in Section 5. The unbalanced case is
studied in Section 6, the batch-and-match policy is an-
alyzed in Section 7, and concluding remarks are of-
fered in Section 8.
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1.4. Notation
For the convenience of the reader, we collect together
the notational conventions used in this paper. Al-
though we have already introduced the notation O(n),
we repeat it here: a generic function f(n) is O(n) if
limsupn→∞

f (n)
n ≤ c for some finite constant c > 0. In a

similar vein, we introduce o(n), Ω(n), and Θ(n). A ge-
neric function f(n) is o(n) if limn→∞ f (n)

n � 0, is Ω(n) if
there exist c > 0 and an integer no ≥ 1 such that f (n) ≥
cn for all integers n ≥ no, and is Θ(n) if f(n) is both O(n)
and Ω(n). We use xn ~ yn as shorthand for xn

yn
→ 1 as

n→∞.
We let R denote the real line, and, for any finite in-

teger k ≥ 1, we let Rk denote the k-dimensional Euclid-
ean space. The Euclidean norm of x ∈ R

k is denoted by
|x|. We let R+ denote the set of nonnegative reals, and
we let Z+ denote the set of nonnegative integers. The
stochastic processes that we consider take values in R

k

and are assumed to be elements of Dk[0,∞), the space
of right continuous functions mapping [0,∞) into R

k

that have left limits, endowed with the Skorokhod
topology.

For x ∈ R+, 
x� is the smallest integer that is not
smaller than x. The standard stochastic order between
two distribution functions F1 and F2 is denoted by

F1≤st F2. We use �d to denote equality in distribution.

More specifically, we write X�d Poisson(x) to denote
that the random variable X has a Poisson distribution
with mean x.

2. The Model
2.1. Dynamics
Buyers and sellers arrive to the market according to in-
dependent Poisson processes with rate λ. The agents
are impatient, in that each buyer and each seller inde-
pendently abandons the market after an independent
and identically distributed (i.i.d.) exponential amount
of time with rate η if they are not matched within this
time. If an agent is matched prior to his abandonment,
then the agent leaves at the time of matching.

Let B(t) and S(t) be the number of buyers and sellers
in the system at time t; these agents have arrived but
have not yet abandoned or been matched. The utility
of a match between any buyer and any seller is a ran-
dom variable V ≥ 0 with cumulative distribution func-
tion (CDF) F(v). When a buyer (seller, respectively) ar-
rives to this centralized system to find it in state
(B(t),S(t)), then S(t) (B(t), respectively) instances of V
are observed by the system manager, which represent
the matching utilities of the arriving agent with all
currently available potential mates. Thus, at any point
in time, the system manager knows the utility that

would be generated by matching any buyer to any
seller.

2.2. Policies
Our goal is to maximize the long-run expected aver-
age rate of utility from matches, which we refer to as
the utility rate. Whereas the system manager could
conceivably make matches at any point in time, we re-
strict our attention to arrival-only policies, where a
match may occur only at the arrival epoch of one of
the agents being matched. In particular, we consider
the following two classes of arrival-only policies.

1. Population threshold policies: A buyer who ar-
rives at time t is matched immediately to a seller if the
number of sellers in the system satisfies S(t) ≥ z; in this
case, the arriving buyer is matched to the seller who
has the highest matching utility with the buyer, with
ties broken arbitrarily. If S(t) < z, then the arriving buy-
er waits in the market and leaves upon being matched
to a later-arriving seller or upon abandonment. Similar-
ly, a seller who arrives at time t is immediately
matched to the highest-matching buyer if B(t) ≥ z and
waits otherwise. We refer to the parameter z as the
population threshold.

2. Utility threshold policies: A buyer who arrives at
time t is matched immediately to the seller with match-
ing value max1≤i≤S(t)Vi if max1≤i≤S(t)Vi > v for some
fixed v ≥ 0, with ties broken arbitrarily. If
max1≤i≤S(t)Vi ≤ v, then the arriving buyer waits in the
market and leaves upon being matched to a later-
arriving seller or upon abandonment. Similarly, a seller
who arrives at time t is immediately matched to the
buyer with matching value max1≤i≤B(t)Vi if
max1≤i≤B(t)Vi > v and waits otherwise. We refer to the
parameter v as the utility threshold.

Given the symmetry of the underlying stochastic
model, it seems natural to restrict ourselves to single-
parameter policies, where buyers and sellers have the
same threshold (z or v). In the analysis of the unbal-
anced case in Section 7, we allow different utility
thresholds for buyers and sellers (vb and vs) and find
that the asymptotically optimal values satisfy vb � vs
under Pareto matching utilities. This result suggests
that a single-parameter threshold policy is not only
easier to use in practice and easier to analyze than a
two-parameter threshold policy, but it also does not
sacrifice performance.

2.3. Utilities
In our model, the utilities of potential matches of a
new arrival with agents on the other side of the mar-
ket may be correlated. However, we make the follow-
ing assumption.
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Assumption 1. There exists a sequence of distributions
F1,F2, : : : such that Fk−1≤st Fk for each k and, for an arriv-
ing agent who finds k agents on the other side of the market,
max{V1, : : : ,Vk} is independent of the past and has distri-
bution Fk.

For example, if the utilities of different matches are
i.i.d. with distribution F, then Fk x( ) � F x( )( )k in As-
sumption 1. But Assumption 1 allows us to deal with
correlated utilities, which is natural when there is con-
textual information (e.g., covariates) that can be used
to inform the utilities based on the types of buyers
and sellers to be matched. More specifically, Assump-
tion 1 holds if the utilities are conditionally indepen-
dent given a context observed at the time of arrival. In
this case, the equation Fk x( ) � F x( )( )k holds with an ad-
ditional expectation, and the stochastic ordering in k
still holds.

Let the random variable M(k)¢max {V1, : : : ,Vk}
have distribution Fk. We impose the following as-
sumption onM(k).

Assumption 2. For each x ∈ R+, define

m x( ) � E M 
x�( )[ ],
and suppose that m ·( ) is regularly varying with index
α ∈ [0, 1). That is, for every x > 0,

lim
t→∞

m tx( )
m t( ) � xα: (1)

A regularly varying function with index α � 0 is also
known as slowly varying.

For the case of i.i.d. utilities, Assumption 2 covers
every utility distribution such that E V1+δ( )

<∞ for
some δ > 0. All distributions that belong to the maxi-
mum domain of attraction of a generalized extreme
value distribution—which unifies the type I (Gumbel),
type II (Frechet), and type III (Weibull) laws within a
single parametric family—satisfy (1) (including, e.g.,
uniform, beta, gamma, lognormal, and Pareto). There
are also other distributions that do not belong to any
domain of attraction in extreme value theory for
which (1) holds; for example, the geometric, negative
binomial, and Poisson distributions satisfy (1) with α
� 0. For ease of reference, we collect some basic facts
about extreme value theory and regularly varying
functions in Section 11 of the online appendix.

The case α� 0 corresponds to distributions for
which all moments exist (i.e., the tail of V decays fast-
er than any polynomial), whereas α > 0 corresponds
to the case in which the tails of V decrease roughly
like a polynomial with degree 1=α. The condition that
α < 1 is imposed to guarantee that E V1+δ( )

<∞ for
some δ > 0. We will refer to α � 0 as the light-tailed case
and α ∈ 0, 1( ) as the heavy-tailed case.

2.4. Scaling
To make further progress, we consider a sequence of
systems indexed by n � 1, 2, : : : , and some quantities
in the nth system include the subscript n. The arrival
rate in the nth system is nλ, and the abandonment
rate in the nth system is η. Alternatively and equiva-
lently, we could leave the arrival rate unscaled and
slow down the abandonment rate by a factor of n, as
in Liu et al. (2015). The matching utilities are unscaled.
In the nth system, we denote the system state by
(Bn(t),Sn(t)), the population threshold by zn, the utility
threshold by vn, and the utility rate by Un.

3. Main Results
Results for the population threshold policy and the
utility threshold policy are given in Theorem 1 in Sec-
tion 3.1 and in Theorem 2 in Section 3.2, respectively.
Theorem 1 shows that the optimal population thresh-
old policy is asymptotically optimal among the class
of arrival-only policies when α � 0 and provides the
asymptotically optimal population threshold when
α ∈ (0, 1). Theorem 2 provides the asymptotically opti-
mal utility threshold when α ∈ (0, 1). The proofs of
Theorems 1 and 2 appear in Section 9 of the online
appendix.

3.1. Population Threshold Policy
We begin by providing a dynamic description of the
system using Poisson processes. Denote the indicator
function of event x by I{x}, and let N+

B ·( ),N−
B ·( ),

N+
S ·( ),N−

S ·( ) be independent Poisson processes with
unit rate, which are used to construct buyer arrivals,
buyer abandonments, seller arrivals, and seller aban-
donments, respectively. Under the population thresh-
old policy with threshold zn, the state (Bn, Sn) of the
nth system at time t satisfies

Bn t( ) �Bn 0( )+
∫ t

0
I{Sn r−( )<zn}dN+

B λnr( )−N−
B η

∫ t

0
Bn r( )dr

( )
−
∫ t

0
I{Bn r−( )≥zn}dN+

S λnr( ),
(2)

Sn t( )�Sn 0( )+
∫ t

0
I{Bn r−( )<zn}dN+

S λnr( )−N−
S η

∫ t

0
Sn r( )dr

( )
−
∫ t

0
I{Sn r−( )≥zn}dN+

B λnr( ):
(3)

The process {Bn(t),Sn(t), t ≥ 0} is a nonnegative (en-
try wise) irreducible two-dimensional birth-and-death
process on a subset of Z+ × Z+, and each coordinate is
bounded by that of an infinite-server queue, for each
n > 0. Thus, the process {Bn(·),Sn(·)} is a positive-
recurrent continuous-time Markov chain and there-
fore it possesses a stationary distribution, which we
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denote by (Bn(∞),Sn(∞)). By symmetry, the utility
rate Up

n(zn) of the population threshold policy with
threshold zn can be expressed as

Up
n(zn) � λnE m Bn ∞( )( )I{Bn ∞( )≥zn}

[ ]
+λnE m Sn ∞( )( )I{Sn ∞( )≥zn}

[ ]
,

� 2λnE m Bn ∞( )( )I{Bn ∞( )≥zn}
[ ]

: (4)

The next theorem shows that, for α � 0, the popula-
tion threshold policy is asymptotically optimal among
the family of arrival-only policies. Also, for each
α ∈ [0, 1), it characterizes the scaling of the optimal
population threshold, that is, the threshold zn that
maximizes the utility rate asymptotically as n→∞.

Theorem 1. Suppose that Assumption 2 holds.
(i) If α � 0, then there exists an o(n) sequence of popula-

tion thresholds z∗n such that limn→∞ m(n)
m(z∗n) � 1. For any such

sequence of thresholds, the population threshold policy is as-
ymptotically optimal in the following sense. Let Up

n(z∗n) and
Un be the utility rates under the aforementioned policy and
any other arrival-only policy, respectively. Then

lim infn→∞ Up
n(z∗n)
Un

≥ 1. The associated utility rate satisfies

lim
n→∞

Up
n(z∗n)

nm(n) � λ: (5)

(ii) If α ∈ 0, 1( ), then the population threshold policy with
z∗n � z∗n, where z∗ � λα

η(1+α) is asymptotically optimal among
the class of population threshold policies. The associated utili-
ty rate satisfies

lim
n→∞

Up
n(z∗n)

nm(n) � λzα∗ 1− ηz∗
λ

( )
: (6)

For α � 0, it remains to compute an o(n) sequence of
thresholds z∗n such that limn→∞ m(n)

m(z∗n) � 1. This is usually
not difficult to do. For example, when utilities are
i.i.d. with an exponential distribution, then z∗n � n

lnn sat-
isfies this property. More generally, as shown in theo-
rem 1 in Bojanic and Seneta (1971), for a large class of
distributions, setting z∗n � n

m(n)δ for any positive real δ is

sufficient. By setting zn in this way (i.e., o(n) but not
too small), we simultaneously ensure the following:
(1) the fraction of agents that abandon the system
tends to 0, and (2) the market thickness, that is, Bn(∞),
is almost linear in n. In other words, almost all agents
experience maximal utility. This can be seen most
clearly in Equation (5), where the utility rate under
the optimal population threshold policy satisfies
Up

n(z∗n) ~ nλm(n), which is the arrival rate of buyers
times the expected value of the maximum of n match-
ing utilities.

However, for heavy-tailed distributions in part (ii)
of Theorem 1, m(zn) for any o(n) sequence zn is vanish-
ingly small compared with m(n). Thus, it is not

possible to ensure that most users see maximal utility,
implying that our simple upper bound is unachiev-
able. Moreover, to maximize the utility rate, it is not
obvious whether the system manager should set zn �
o(n) to guarantee that most agents are matched in-
stantly or should set zn �O(n) to ensure that market
thickness is maximal even if a nontrivial fraction of
users abandon the system. Part (ii) of Theorem 1 im-
plies that the latter option is the right choice under
heavy-tailed distributions.

We conclude this subsection with a brief sketch of
the proof of Theorem 1, which relies on a fluid analy-
sis of Equations (2)–(3). We define B̄n(t) � n−1Bn(t) and
S̄n(t) � n−1Sn(t). Because the formal limit of
(Bn(t),Sn(t)) involves indicator functions that are not
continuous (see (35)–(36) in Section 9.2 of the online
appendix), we need to study the limiting dynamical
system as the solution to the following Skorokhod
problem:

B̄ t( ) � B̄ 0( ) +λt− η

∫ t

0
B̄ r( )dr− LB̄z t( ) − LS̄z t( ), (7)

S̄ t( ) � S̄ 0( ) +λt− η

∫ t

0
S̄ r( )dr− LB̄z t( ) − LS̄z t( ), (8)

where LB̄z ·( ), LS̄z ·( ) are nondecreasing processes such
that LB̄z 0( ) � LS̄z 0( ) � 0 and∫ t

0
B̄ r( ) − z
( )

dLB̄z r( ) �
∫ t

0
S̄ r( ) − z
( )

dLS̄z r( ) � 0, (9)

and B̄ t( ), S̄ t( ) ≤ z. To obtain explicit expressions for the
Skorokhod problem, we use the change of variables
B̄z t( ) � z− B̄ t( ), S̄z t( ) � z− S̄ t( ), and λ̄z � λ=η− z ≥ 0.
This allows us to reduce (9) to the one-dimensional
condition∫ t

0
min B̄z r( ), S̄z r( )( )

dL r( ) � 0, L 0( ) � 0,

which enables us to obtain an explicit solution to
(7)–(9). With this solution in hand, we show unique-
ness and then apply a standard Picard iteration to ar-
gue existence.

We use martingale arguments to show that
(S̄n(·), B̄n(·)) → (S̄(·), B̄(·)) uniformly on compact sets
in probability. The dynamical system describing (B̄, S̄)
has the unique attractor (z, z) if λ=η ≥ z, given the ini-
tial condition B̄(0) ≤ z, S̄(0) ≤ z. We then show that the
limit interchange (t→∞ and n→∞) holds, and we
prove that (B̄n(∞), S̄n(∞)) → (z,z) almost surely as
n→∞.

The next step in the proof is to compute the utility
rate. Taking expectations on both sides of Equation (2)
yields

ηE B̄n ∞( )[ ] � λ{P S̄n ∞( ) < z
( ) − P B̄n ∞( ) ≥ z

( )}, (10)
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from which we can obtain, using symmetry argu-
ments, that

lim
n→∞P B̄n ∞( ) ≥ z

( ) � 1
2

1 − ηz
λ

( )
: (11)

The following key lemma, which is proved in Sec-
tion 9 of the online appendix, allows us to compute
the utility rate in (4). Recall that m(n) is defined in As-
sumption 2.

Lemma 1. Let Nn{ }n≥1 be a sequence of positive random
variables taking values on the positive integers, and let
N̄n � E Nn( ) <∞. Assume that N̄n →∞ and that
P Nn − N̄n

∣∣ ∣∣ > εN̄n
( )→ 0. Then E m Nn( )[ ] ~m N̄n

( )
as

n→∞.

Using Lemma 1 and Equation (11) and setting zn �
nz allows us to compute the utility rate

Up
n(zn) � λnm zn( ) 1 − ηz

λ

( )
1 + o 1( )( ) (12)

as n→∞, and combining (12) with Equation (1)
yields

Up
n(zn)

nm(n) � λzα 1− ηz
λ

( )
1+ o 1( )( ): (13)

In the α ∈ (0, 1) case, we optimize the right-hand
side of (13) with respect to z to obtain the asymptoti-
cally optimal population threshold z∗n � z∗n, where
z∗ � λα

η(1+α).
In the α � 0 case, we similarly use the fluid limit

analysis to show that E[Bn(∞)] is o(n) for any sequence
of thresholds zn that is o(n). Furthermore, the argu-
ments used to obtain (11) also imply that

lim
n→∞P Bn ∞( ) ≥ zn( ) � lim

n→∞P Sn ∞( ) ≥ zn( ) � 1
2
: (14)

A PASTA (Poisson arrivals see time averages) argu-
ment implies that Up

n(zn) ≥ λnm(zn) 1+ o(1)( ): Conse-
quently, for any sequence zn � o(n) such that

lim
n→∞

m(zn)
m(n) � 1,

we would have that Up
n(zn) ≥ λnm(n) 1+ o(1)( ). Lemma

3 in Section 9.1 of the Appendix guarantees that such
a sequence exists.

Finally, asymptotic optimality in part (i) of Theorem
1 follows from the aforementioned results by con-
structing the following simple upper bound (see Sec-
tion 9 of the online appendix for a proof of Lemma 2)
on the performance of any arrival-only policy, which
uses Lemma 1 and assumes that all agents are
matched (and hence the arrival rate in Lemma 2 is λn)
and that—when computing Bn(∞) in Equation (4)—
agents leave only upon abandonment (implying that
Bn(∞)�d Poisson(λn=η)).

Lemma 2. Let Un be the utility rate for any arrival-only
policy. Then an upper bound U+

n is given by

Un ≤U+
n � λnm

λn
η

( )
:

3.2. Utility Threshold Policy
Because the population threshold policy is asymptoti-
cally optimal within the class of arrival-only policies
when α � 0, we focus on the case α ∈ (0, 1) in Theorem
2. In order to describe the dynamics of the utility
threshold policy, we introduce two independent ar-
rays of nonnegative i.i.d. random variables, {VB

i,j : i ≥
1, j ≥ 1} and {VS

i,j : i ≥ 1, j ≥ 1}, having CDF F ·( ). We let

{AB
j : j ≥ 1} be the sequence of arrival times associated

with the process N+
B (nλ·), and we let {AS

j : j ≥ 1} be the
sequence of arrival times associated with the process
N+

S (nλ·). The dynamics can be described path-by-path
as follows:

Bn t( ) � Bn 0( ) + ∑N+
B nλt( )

j�1
I
{max

Sn(ABj−)
i�1 VB

i,j≤v}
− ∑N+

S nλt( )

j�1
I
{max

Bn(ASj−)
i�1 VS

i,j>v}

−N−
B η

∫ t

0
Bn r−( )dr

( )
,

Sn t( ) � Sn 0( ) + ∑N+
S nλt( )

j�1
I
{max

Bn(ASj−)
i�1 VS

i,j≤v}
− ∑N+

B nλt( )

j�1
I
{max

Sn(ABj−)
i�1 VB

i,j>v}

−N−
S η

∫ t

0
Sn r( )dr

( )
:

(15)

By symmetry and ergodicity, we can express the
utility rate Uu

n(vn) for the utility threshold policy with
threshold vn as

Uu
n(vn) � 2λnE[E[M(Bn(∞))I{M Bn ∞( )( )≥vn}|Bn ∞( )]]: (16)

Because the analysis of the utility threshold policy
considers the entire distribution of the maximum rath-
er than only its expected value, we need to strengthen
Assumption 2 by imposing the following additional
assumption.

Assumption 3. In addition to Assumption 2, suppose that
α ∈ 0, 1( ) and

M(n)
m(n) ⇒ X as n→∞,

where P X > t( ) � 1− e−κ=t1=α and κ is a normalizing cons-
tant such that E X( ) � 1.

That is, X � (κ−1T)−α is an exponential random vari-
able with mean one. Assumption 3 is satisfied if the
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utilities belong to the domain of attraction of the
Frechet law, which in turn is equivalent, in the i.i.d.
case, to requiring the distribution of utilities to be reg-
ularly varying with index 1=α (see section 1.2, propo-
sition 1.11 of Resnick 1987).

Theorem 2. Suppose that Assumption 3 holds. For
x ∈ [0,λ=η], define

v x( ) � κx

ln 2λ
ηx+λ
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
α

:

Then there exists a unique solution x∗ ∈ 0,λ=η
( )

satisfy-
ing

x1−α∗ v x∗( ) η

2λακα
�

∫ κx∗=v x∗( )1=α

0
t−αe−tdt:

Moreover, a threshold policy with utility threshold v∗n �
v x∗( )m n( ) is asymptotically optimal among the class of util-
ity threshold policies and the associated utility rate satisfies

lim
n→∞

Uu
n(v∗n)

nm(n) � 2λxα∗ E XI
X≥v(x∗)

xα∗

{ }⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

As in the population threshold policy, this result
shows that, for heavy-tailed distributions, it is benefi-
cial to ensure that market thickness is maximal at the
cost of abandonment of a nontrivial fraction of users
in the system. Although we do not prove any results
for the utility threshold policy in the α � 0 case (since
asymptotic optimality is already achieved for the pop-
ulation threshold policy), we show in Section 10 of the
online appendix how heuristics inspired by Theorems
1 and 2 can lead to effective utility thresholds in the
α � 0 case.

The proof of Theorem 2 uses the same general ap-
proach as in the proof of part (ii) of Theorem 1, and
we briefly outline it here. We assume that the thresh-
olds satisfy

vn
m(n) → v for some v ≥ 0,

and we use Assumption 3 to show that the putative
fluid limit of Bn(t) � n−1Bn(t) and Sn(t) � n−1Sn(t) is

B̄ t( ) � B̄ 0( ) +λ

∫ t

0
e−κS̄ r( )=v1=α − η

∫ t

0
B̄ r( )dr

−λ

∫ t

0
1− e−κB̄ r( )=v1=α
( )

dr, (17)

S̄ t( ) � S̄ 0( ) +λ

∫ t

0
e−κB̄ r( )=v1=α − η

∫ t

0
S̄ r( )dr

−λ

∫ t

0
1− e−κS̄ r( )=v1=α
( )

dr: (18)

A martingale decomposition similar to that given in
the proof of part (ii) of Theorem 1 shows that B̄n ·( ) →
B̄ ·( ) and S̄n ·( ) → S̄ ·( ) uniformly on compact sets in
probability. Because (17)–(18) do not pose the degen-
eracies involving the Skorokhod map encountered in
the case of part (ii) of Theorem 1, we can use theorem
7.2 of chapter 3 in Ethier and Kurtz (2005) to show
that the family (B̄n(t) : t ≥ 0), (S̄n(t) : t ≥ 0)( ){ }

n≥1 is
tight in the Skorokhod topology.

The unique solution to the fluid limit satisfies

0 � −ηx̄ − λ + 2λe−κx̄=v
1=α
,

which can be expressed as

v x̄( ) � κx̄

ln 2λ
ηx̄+λ
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
α

(19)

or

x̄ v( ) � −λ

η
+ v1=α

κ
W

2λκ
ηv1=α

exp
λκ

ηv1=α

( )( )
,

whereW(x) is the Lambert W function.
We use Assumptions 2 and 3 to optimize the utility

rate with respect to x̄(v), yielding the optimization
problem

sup
x̄∈ 0,λ=η( )

2λx̄ακα

∫ κx̄=v x̄( )1=α

0
t−αe−tdt: (20)

The solution to (20) reduces to x̄∗ uniquely satisfying

v x̄( )η
2λκα

� αx̄α−1
∫ κx̄=v x̄( )1=α

0
t−αe−tdt,

and substituting x̄∗ into (19) gives the optimal utility
threshold.

4. A Greedy Policy
In Section 10 in the online appendix, we apply the re-
sults in Theorems 1 and 2 to several different match-
ing utility distributions and then assess the accuracy
of these analyses via simulation in Section 5. To pro-
vide a natural benchmark for comparison, we first an-
alyze the greedy policy, which corresponds to the
population threshold policy with threshold zn� 0.
That is, under the greedy policy, each arriving agent
is matched to the available mate with the highest
matching utility and waits in the market if there are
no available mates.

Under the greedy policy, the state of the nth system
can be described by Bn(t) − Sn(t) because there are
never both buyers and sellers in the system at the
same time. By theorem 4.5 in Liu et al. (2015), the
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steady-state distribution of Bn(t)−Sn(t)��
n

√ converges to
N(0,λ=η) as n→∞.

The probability that a buyer or seller abandons is
the long-run expected number of abandonments per
unit time divided by the total arrival rate of agents
(i.e., buyers plus sellers), which can be approximated
by ��

n
√

ηE[|N(0,λ=η)|]
2λn

�
��
n

√
η

��
2
π

√
λ
η

2λn
,

� 1������
2πn

√ , (21)

→ 0: (22)

By (22), the matching rate (i.e., the average number of
matches per unit time) for the greedy policy con-
verges to nλ as n→∞.

When a match occurs (i.e., when there is at least one
available mate upon an agent’s arrival), the expected
number of available mates when an agent arrives can
be approximated by��

n
√

E[N(0,λ=η)|N(0,λ=η) > 0] � λ

η

����
2n
π

√
: (23)

By (22)–(23) and Lemma 1, the utility rate of the
greedy policy, which is denoted by Ug

n, satisfies

Ug
n ~ nλm

λ

η

����
2n
π

√( )
: (24)

5. Simulation Results
To assess the accuracy of our asymptotic results, we
consider special cases of the three canonical examples
in Section 10 of the online appendix: exp(1), Pareto(1,
2), and U[0, 1]. For all cases, we let λ � η � 1 and n �
1,000, so that the mean number of buyers and sellers
in a match-free system is 1,000. We initialize the sys-
tem with 1,000 buyers and 1,000 sellers, simulate the
system for 1,500 time units, discarding the first 150
time units, and then repeat this procedure 100 times.

To find the optimal population threshold levels, we
compute the utility rate for the population threshold
policy for each integer threshold value in the range

[0, 1,000], using the same set of random numbers for
each threshold level. We repeat the same procedure
for the utility threshold policy and discretize the utili-
ty threshold values by 0.1 for the exp(1) and Pareto(1,
2) cases and by 0.01 for the U[0, 1] case.

5.1. Exponential(1) Case
In the exponential case, we predict that the optimal
population threshold level is z∗n � 1,000

ln1,000 � 144:8, and
the utility rate under this threshold policy approaches
the upper bound and is twice as large as the utility
rate of the greedy policy (see Section 10.1 of the online
appendix). The optimal threshold level found via sim-
ulation is 148, and the suboptimality of the utility rate
under the threshold 144.8 versus the threshold 148 is
0.004% (Table 2). Our heuristic utility threshold is v∗n �
5:56 from (123) in the online appendix, which coin-
cides with the optimal threshold found via simulation
(with a discretization of 0.1) of 5.6.

However, the predicted utility rates are less accu-
rate than our determination of the best threshold lev-
els. By (119) in the online appendix, our best estimate
for the utility rate under the optimal population
threshold policy is 5,553, which is 14.9% higher than
the simulated value in Table 2. By (21) and (117) in the
online appendix, our best estimate of the utility rate
under the greedy policy is

Ug
n ≈ λn

ν
1 − 1������

2πn
√

( )
γ + ln

λ

η

����
2n
π

√( )( )
,

� 3, 757,

which is 8.5% higher than the simulated value in
Table 2. Our best estimate of the upper bound is given
in (115) in the online appendix, which yields 7,485.
The optimal-to-greedy ratio of the simulated utility
rates is 4,833

3,462 � 1:40 rather than 2. Further simulations
reveal that convergence is very slow: this simulated
ratio is 1.48 when n � 104 and 1.54 when n � 105. Most
of the inaccuracy in estimating the optimal-to-greedy
ratio is due to the fact that the simulated utility rate of
the optimal threshold policy is not very close to the
upper bound.

Table 2. Theoretical and Simulation Results for the Population Threshold Policy

Utility distribution

Optimal population threshold Simulated utility rate [95% confidence interval]

Theoretical Simulation Theoretical threshold Simulation threshold Greedy policy

Exponential(1) 144.8 148 4,833
[4,824, 4,840]

4,833
[4,827, 4,841]

3,462
[3,425, 3,503]

Pareto(1, 2) 333.3 347 22,095 22,102 8,259
[21,997, 22,241] [21,972, 22,234] [8,107, 8,428]

Uniform(0, 1) 0 22 908.4 946.3 908.4
[906.0, 911.3] [945.1, 947.7] [906.0, 911.3]
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Finally, the utility rate of the optimal utility thresh-
old policy is 5,732 (Table 3). Although still far from the
upper bound, it is 18.6% higher than the utility rate
achieved by the optimal population threshold policy.

5.2. Pareto(1, 2) Case
In the Pareto case, we predict that the optimal popula-
tion threshold level is 1,000

3 � 333:3. The optimal popu-
lation threshold found via simulation is 347, and the
utility suboptimality of the theoretical threshold is
0.03% (Table 2). The solution to (130) in the online ap-
pendix is z∗ � 0:512. Hence, the optimal utility thresh-
old level in (131) in the online appendix is v∗n � 42:8,
which is very close to the value of 42.0 found via
simulation.

Our estimate of the utility rate under the optimal
population threshold policy is 21,573 by (127) in the
online appendix, which is 2.4% less than the simulated
value of 22,102 in Table 2. The utility rate under the
optimal utility threshold policy in (132) in the online
appendix is 43,756, which is nearly identical to the op-
timal simulated value of 43,750. Our best estimate for
the utility rate of the greedy policy is (1− 1����

2πn
√ ) times

the right-hand side of (125) in the online appendix, or
8,791, which is 6.4% larger than the simulated value in
Table 2. Our estimate of the upper bound in (124) in
the online appendix is 56,050. By (129) in the online
appendix, the predicted performance ratio between
the optimal population threshold policy and the
greedy policy is 2

3 (1,000π18 )1=4� 2:42, compared with the
optimal-to-greedy simulated ratio of 22,102

8259 � 2:68 (Ta-
ble 2). By (124) in the online appendix, the ratio of the
upper bound to the utility rate of the optimal popula-

tion threshold policy is predicted to be 3
��
3

√
2 � 2:60,

compared with the simulated value of 56,050
22,102 � 2:54.

The simulated utility rate of the optimal utility
threshold policy is nearly twice as large as the simu-
lated utility rate of the optimal population threshold
policy (Table 3), although it is still 21.9% smaller than
the predicted upper bound of 56,050.

5.3. Uniform(0, 1) Case
In the uniform case, we predict that the greedy policy
is asymptotically optimal. The optimal population

threshold level found via simulation is 22, and the re-
sulting utility suboptimality of the greedy policy is
4.0% (Table 2). Note that other population thresholds
aside from zero are also asymptotically optimal in this
case, including ln (n) � ln (1, 000) � 6:91, which has a
suboptimality of 2.0%. Our best estimate of the utility
rate under the greedy policy is (1− 1����

2πn
√ ) times the

right-hand side of (135) in the online appendix, or
948.2, which is 4.4% larger than the simulated value in
Table 2. The upper bound in (133) in the online appen-
dix equals 987.4, which is 4.3% larger than the utility
rate corresponding to the optimal population thresh-
old level of 22. The predicted optimal utility threshold
from Equation (137) in the online appendix is
v∗n � 0:974, compared with the value of 0.96 found via
simulation, for a utility suboptimality of 0.24%
(Table 3).

In summary, our analysis identifies the optimal
threshold level within about 2% (considering the pos-
sible range of [0, 1,000]) and its suboptimality is no
more than 2% for the population threshold policy in
the uniform case and is negligible in the other five
cases. We also note that the predicted fraction of
agents who abandon the market under the optimal
population threshold policy, which is 2zn

2λn
� 1

lnn � 0:145
(i.e., the total abandonment rate divided by the total
arrival rate) in the exponential case, z

∗
n
n � 1

3 in the Pareto
case by (126) in the online appendix, and 1− 1����

2πn
√ �

0:013 in the uniform case by (21), are reasonably close
to the simulated values in the fourth column of
Table 3. As predicted by our analysis, the utility rate
of the greedy policy—normalized by the mean of the
matching distribution—increases with the right tail of
the matching distribution (this quantity is 1,817 for
the uniform, 3,462 for the exponential, and 4,129 for
the Pareto), as does the ratio of the utility rates be-
tween the best threshold policy and the greedy policy
(1.04 for the uniform, 1.40 for the exponential, and
2.68 for the Pareto under the population threshold
policy, and 1.06, 1.66, and 5.30 under the utility
threshold policy). In addition, despite the asymptotic
optimality result, there is a large gap between the util-
ity rate of the best population threshold policy and

Table 3. Simulation Results for Both Threshold Policies

Utility distribution

Population threshold policy Utility threshold policy

Optimal threshold Utility rate Fraction abandoned Optimal threshold Utility rate Fraction abandoned

Exponential(1) 148 4,833 0.140 5.6 5,732 0.150
[4,827, 4,841] [5,724, 5,740]

Pareto(1, 2) 347 22,102 0.334 42.0 43,750 0.503
[21,972, 22,234] [43,541, 43,960]

Uniform(0, 1) 22 946.3 0.027 0.96 963.0 0.021
[945.1, 947.7] [961.7, 964.2]

Note. Columns 2 and 3 are taken from Table 2.
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the upper bound in the exponential case. The im-
provement of the utility threshold policy over the
population threshold policy also increases with the
right tail of the matching distribution, with the ratio
of the utility rates equaling 1.02, 1.19, and 1.98 for the
uniform, exponential, and Pareto cases, respectively.
This improvement is achieved by being more patient
and allowing more agents to abandon the market, par-
ticularly in the Pareto case (last column in Table 3).

6. Unbalanced Markets
In this section, we consider unbalanced markets,
where buyers and sellers arrive at rates nλb and nλs in
the nth system, and abandon at rates ηb and ηs, respec-
tively. We restrict ourselves to the analysis of the utili-
ty threshold policy in the case α ∈ (0, 1), which is very
similar to the corresponding analysis in the symmetric
case. We also note that an analysis of the population
threshold policy in the unbalanced case is complicated
by the extra degree of freedom that is introduced (and
needs to be determined) in Equations (45)–(47) in the
online appendix and is beyond the scope of this paper.
Under the utility threshold policy in the nth system,
an arriving buyer is matched to the seller that yields
the maximum utility if this utility exceeds the thresh-
old vn,s; similarly, an arriving seller is matched to its
highest-matching buyer if the utility exceeds the
threshold vn,b. The dynamics are given by the equa-
tions

Bn t( ) � Bn 0( ) + ∑N+
B nλbt( )

j�1
I

max
Sn AB

j−

( )
i�1 VB

i,j≤vn,s
⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭

− ∑N+
S nλst( )

j�1
I

max
Bn (ASj−)
i�1 VS

i,j>vn,b

{ } (25)

−N−
B ηb

∫ t

0
Bn r−( )dr

( )
,

Sn t( ) � Sn 0( ) + ∑N+
S nλst( )

j�1
I

max
Bn (ASj−)
i�1 VS

i,j≤vn,b
{ }

− ∑N+
B nλbt( )

j�1
I

max
Sn(ABj−)
i�1 VB

i,j>vn,s

{ }
−N−

S ηs

∫ t

0
Sn r( )dr

( )
, (26)

where {AB
j : j ≥ 1} is the sequence of arrival times asso-

ciated with N+
B (nλb·), and {AS

j : j ≥ 1} is the sequence
of arrival times associated with N+

S (nλs·). As in the

symmetric case, the VB
i,j’s and VS

i,j’s are independent
arrays of i.i.d. random variables with distribution F ·( ).

Following the development in the symmetric case
(e.g., (16)), the utility rate takes the form

Uu
n(vn,b, vn,s) � nλbE[E[M Sn ∞( )( )I{M Sn ∞( )( )≥vn,s}|Sn ∞( )]]

+ nλs E[E[M Bn ∞( )( )I{M Bn ∞( )( )≥vn,b}|Bn ∞( )]]:
(27)

Our main result is presented in Theorem 3. The
proof of Theorem 3 appears in Section 9.4 in the online
appendix and largely mimics the proof of Theorem 2.

Theorem 3. Suppose that Assumption 3 holds. Let v∗ be
the optimal solution for the optimization problem

max
v≥0

λsbαE[XI{bαX>v}] +λbsαE[XI{sαX>v}] (28)

subject to ηbb+λs � λbexp (−κs=v1=α)
+λsexp (−κb=v1=α), (29)

ηbb+λs � ηss+λb: (30)

Then a threshold policy of the form v∗n,b � v∗n,s �m(n)v∗ is
asymptotically optimal among the class of utility threshold
polices. The associated utility rate satisfies

lim
n→∞

Uu
n(v∗n,b,v∗n,s)
nm(n) � λsb∗αE[XI{bα∗ X>v∗}]

+λbsα∗ E[XI{sα∗ X>v∗}],

where b∗, s∗ are solutions that satisfy constraints (29)–(30).

Although the results in Theorem 3 are beyond our
intuitive grasp, we attempt to provide some possible
intuition for why v∗b � v∗s in the unbalanced case. Let
us consider a fluid model in which the two utility
thresholds are both equal to v∗. We can classify the
matched sellers into two categories: actively matched
(i.e., they arrive to the market and are immediately
matched with buyers) and passively matched (i.e.,
they wait in the market and then are matched with ar-
riving buyers). Now suppose that we change the utili-
ty thresholds to vb and vs, where vb < v∗ < vs, in such a
way that the number of additional actively-matched
sellers (call it ds) equals the reduction in the number
of passively-matched sellers. Because the total number
of matched sellers does not change, the number of
abandoned agents remains the same and we can focus
on the matching utilities of these marginal sellers. Let
ua be the utility per match for the ds additional
actively-matched sellers, and let up be the utility rate
per match for the ds sellers that are no longer passive-
ly matched. The utility per match of these marginal
sellers is between the new threshold and the old
threshold, and therefore vb < ua < v∗ and v∗ < up < vs.
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Hence, the net change in utility is (ua − up)ds, which is
negative.

We conclude this section with a numerical example
that is a variant of the one in Section 10.2 of the online
appendix: let λb � 2, λs � 1, ηb � 1, ηs � 1, n�1,000,
and assume a Pareto(1, 2) distribution, so that α �
1=2, κ � 1=π and m(n) � ����������

1, 000π
√

. Then b(s) � s+ 1 in
(96) in the online appendix, and (105) in the online ap-
pendix reduces to

2e−sτ + e−(s+1)τ � s+ 2:

The solution to (98) in the online appendix is s∗ �
0:365 and τ(0:365) � 0:361, which yields

v∗n,b � v∗n,s �
������
1,000
0:361

√
� 52:7. Interestingly, this threshold

level of 52.7 is higher than in the symmetric case,
where λb � 1 and v∗n � 42:8. Moreover, leaving all pa-
rameter values fixed except for λb, we numerically
compute v∗n,b in (104) in the online appendix and find
that it is increasing and concave in λb ≥ 1.

With λb � 2, we simulate this system in the same
manner as in Section 5. At a discretization of 0.1, a
two-dimensional search of (vn,b,vn,s) space via simula-
tion for the optimal thresholds yields (52.7, 52.3), with
a corresponding simulated utility rate of 71,046 and
with abandonment fractions of 0.681 for buyers and
0.363 for sellers. The simulated utility rate at
(v∗n,b,v∗n,s) � (52:7, 52:7) is 71,010, which is suboptimal
by 0.05%. The predicted utility rate, Uu

n(v∗n,b,v∗n,s) in
(106) in the online appendix, is 70,992, which is 0.03%
less than the simulated value of 71,010.

Fixing one utility threshold level at 52.7 and varying
the other threshold level (figure 1 in the online appen-
dix) reveals that the simulated utility rate is slightly
more sensitive to vs than vb, perhaps because arriving
buyers see fewer potential matches than arriving sell-
ers. This figure also shows that it is more suboptimal
to underestimate the threshold level than to overesti-
mate it.

7. Batch-and-Match Policy
In this section, we restrict ourselves to Pareto match-
ing utilities with finite mean, where F(v) � 1− (cv)−β,
for β > 1, c > 0, and cv ≥ 1, so that α � 1=β in Assump-
tion 2. We consider a one-parameter batch-and-match
policy: At times t � {Δ, 2Δ, 3Δ, : : : , }, we match
min{B(t),S(t)} buyers and sellers by randomly choos-
ing min {B(t),S(t)} agents from the thicker side of the
market (e.g., buyers if B(t) ≥ S(t)) and then maximize
the total utility from these matches; this class of poli-
cies allows us to consider a balanced random assign-
ment problem, which is easier to analyze than an un-
balanced random assignment policy. The goal is to
choose the time window Δ that maximizes the long-
run average utility rate. The main qualitative

conclusion from this section is that—for the special
case of λ � η � c � 1 and β � 2—the utility threshold
policy easily outperforms this batch-and-match poli-
cy, both in the asymptotic analysis and in the simula-
tion results.

To analyze the performance of this policy, we con-
sider a random assignment problem, where there are
k buyers and k sellers with i.i.d. Pareto matching utili-
ties Vi,j between buyer i and seller j. The matching
problem is

max
π

∑k
i�1

Vi,π(i),

where π is a permutation function. Let
M(k) �maxπ

∑k
i�1Vi,π(i):

The main result of this section is given in Theorem
4, which is proved in Section 9.5 of the online appen-
dix. The corresponding results for the unbalanced
case are presented without proof at the end of Section
9.5 of the online appendix.

Theorem 4. Consider the symmetric model with arrival
rate λ, abandonment rate η, and Pareto (c,β) matching
utilities with finite mean. Let Ub

n(Δ) be the utility rate of
the batch-and-match policy with time window Δ. Then the
utility rate satisfies

lim
n→∞

Ub
n(Δ)
nα+1

≤
cΓ(1−α) λ

η (1− e−ηΔ∗ )
[ ]α+1
Δ∗ , (31)

where the asymptotically optimal time window Δ∗ is the
unique solution to

eηΔ � (1+ α)ηΔ+ 1: (32)

Note that Δ∗ increases in α in (32), and so—as in the
population threshold policy—heavier tails lead to
thicker markets.

We conclude this section with the numerical Pare-
to(1, 2) example from Section 5, where λ � η � 1, n �
1,000, F(v) � 1− v−2, and α � 1=2. Equation (32) re-
duces to eΔ � 3

2Δ+ 1, which has solution Δ∗ � 0:76, im-
plying from (112) in the online appendix that we
make approximately 1, 000(1− e−0:76) � 532 matches in
each cycle. The upper bound for the utility rate in (31)

is
��
π

√ (1−e−Δ∗ )3=21, 0003=2
Δ∗ � 28, 644, which is much smaller

than the predicted utility rate of 43,750 for the utility
threshold policy from (132) in the online appendix. A
one-dimensional search using simulation generates an
optimal time window of 0.75, confirming the accuracy
of our asymptotic analysis. The simulated utility rate
under this time window is 25,168 and the lower
bound for the utility rate in Lemma 5 is 131, suggest-
ing that the upper bound is useful and the lower
bound is very loose.
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8. Concluding Remarks
A fundamental trade-off in centralized dynamic
matching markets relates to market thickness: wheth-
er matches should be delayed—at the risk of antago-
nizing waiting agents—in the hope of obtaining better
matches in the future. Very little is known about this
issue when matching utilities are general. By combin-
ing queueing asymptotics (as an aside, we note that
perhaps the most surprising part of our study is that
rather than requiring a diffusion analysis, a fluid anal-
ysis is sufficient to analyze this problem) with extreme
value theory, we obtain explicit results that shed light
on this issue. For symmetric markets, as the right tail
of the matching utility distribution gets heavier, it is
optimal to become more patient and let the
market thickness (and abandonment rate) increase.
Whereas empirical works on matching markets use
more complicated covariate models than what we con-
sider (e.g., Hitsch et al. 2010, Boyd et al. 2013, Agarwal
2015), it seems clear from these analyses that matching
utilities typically are not in the domain of attraction of
the Weibull law. Therefore, large centralized matching
markets—whether balanced or unbalanced—are likely
to benefit from allowing the market to thicken.

Enabled by the decoupling of the fluid queueing
dynamics and the extremal behavior of the matching
utilities, our study appears to be the first to allow for
correlated matching utilities, which is likely to be a
common phenomenon in practice: an agent who is
deemed objectively attractive in a labor, housing, or
school choice model is likely to have matching utilities
with potential mates that are positively correlated
rather than i.i.d. In Section 10.4 of the online appen-
dix, we find that positive correlation reduces the mar-
ket thickness in the utility threshold policy but not the
population threshold policy, and it reduces the utility
rate under both policies.

We note four limitations in our study. First, most of
our analysis is restricted to arrival-only policies. In
particular, it might be possible to do better by batch-
ing sets of agents and then matching them, as in
Mertikopoulos et al. (2020). Moreover, generalizing
their results to our setting is likely to be quite chal-
lenging, in that the π2=6 result requires an exponential
matching distribution and an objective of minimizing
the matching cost (they minimize mismatch plus wait-
ing costs rather than maximizing utility in the pres-
ence of abandonment). Whereas they generalize their
results in section 6 of their paper by positing a func-
tional form for how the expected minimum mismatch
costs decrease as a function of the number of agents in
the market, this functional form does not appear to
follow from any more primitive distributional as-
sumptions. In Section 7, we consider Pareto utilities
and analyze a simple batch-and-match policy, which

periodically (with an asymptotically optimal time
window) optimally matches all agents on the thinner
side of the market with an equal number of agents
randomly selected from the thicker side of the market.
Perhaps surprisingly, we show that, in the Pareto
case, the utility threshold policy easily outperforms
the batch-and-match policy. Nonetheless, this does
not preclude the possibility that more sophisticated
batching policies (e.g., optimally—rather than ran-
domly—select the agents to match from the thicker
side of the market or include a utility threshold for al-
lowable matches as a second parameter) might out-
perform the utility threshold policy.

Second, most of our analysis considers a symmetric
market, with buyers and sellers having the same arriv-
al and abandonment rates. Whereas some markets,
such as cadaveric organ transplants and public hous-
ing, tend to have chronic supply shortages, other mar-
kets have economic forces at play that tend to roughly
balance supply and demand. In a static matching mar-
ket, even a slight imbalance can give rise to a unique
stable matching (Ashlagi et al. 2017a). We also note
that a greedy policy is optimal in a somewhat differ-
ent unbalanced market setting, where easy-to-match
agents can match with all other agents in the market
with a specified probability, but hard-to-match agents
can match only with easy-to-match agents with a dif-
ferent specified probability (Ashlagi et al. 2018a). In
our analysis of the utility threshold policy in the
heavy-tailed case of an unbalanced market, we obtain
the somewhat surprising result that the solution is
symmetric; that is, the utility threshold is the same for
buyers and sellers. Moreover, we find (in our Pareto
example) that the amount of patience increases with
the amount of imbalance; that is, the larger the imbal-
ance, the more agents that are going to be turned
away, and the more selective the matching becomes.
However, we leave a complete analysis of the unbal-
anced problem for future work.

Although our model can be viewed as allowing a
continuum of classes via the distribution of the match-
ing utility, the third restriction is that our analysis
does not naturally lend itself to a setting where there
is a discrete number of classes with class-dependent
matching utilities. In particular, in some settings (e.g.,
organ donation), some classes of buyers/sellers are
compatible with only prespecified classes of sellers/
buyers. The decoupling of the queueing fluid dynam-
ics and the extremal behavior of the matching utilities
should carry over to the setting with a finite number
of classes with some incompatibility among classes.
However, it would make sense to consider multiple
thresholds in this setting, and a multidimensional
model with multiple thresholds would be a nontrivial
extension.
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The final restriction is exponential abandonment.
Relaxing this assumption would require a different
approach, such as hazard rate scaling (Reed and Tez-
can 2012) and would likely be much more difficult.

Finally, we note that there may be equity issues if a
significant number of agents are allowed to abandon
the market (Table 3). The consideration of a risk-
sensitive objective function would likely require a dif-
fusion approximation, which would be, for example, a
two-dimensional Ornstein-Uhlenbeck process with an
unusual Skorokhod condition under a population
threshold policy.
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Appendix

The proofs appear in §9, the main results are applied to canonical examples in §10, and some

useful facts about extreme value theory and regularly varying functions are collected in §11.

9 Technical Proofs

Before we prove Theorems 1, 2, 3 and 4 in §9.2, §9.3, §9.4 and §9.5 respectively, we prove Lemmas 1

and 2, and state and prove Lemmas 3 and 4, in §9.1. Lemma 4 is used in the proof of Theorem 2.

9.1 Preliminary Lemmas

Proof of Lemma 1

By uniform local convergence, we must have that for any 0 < a < b < ∞ (see Resnick 1987,

Section 0.4, Proposition 0.5),

lim
x→∞

sup
a≤t≤b

!!!!
m (xt)

m (x)
− t−α

!!!! = 0.

Therefore,

limn→∞E

"!!m (Nn)−m
#
N̄n

$!! I{|Nn−N̄n|≤εN̄n}

m
#
N̄n

$
%

≤ limn→∞ sup
1−ε≤t≤1+ε

!!!!!
m

#
N̄nt

$

m
#
N̄n

$ − 1

!!!!! ,

≤ O (ε) .

On the other hand, note that

E

"!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! I{|Nn−N̄n|>εN̄n}

%

≤ E

"!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! I{Nn−N̄n>εN̄n}

%
+ E

"!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! I{N̄n−Nn>εN̄n}

%
.

On the event N̄n (1− ε) > Nn, since m (·) is nondecreasing, we have that
!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! = 1− m (Nn)

m
#
N̄n

$ ≤ 1,

and therefore

E

"!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! I{N̄n−Nn>εN̄n}

%
≤ P

#!!Nn − N̄n

!! > εN̄n

$
= o (1) as n → ∞.
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On the other hand, again, because m (·) is nondecreasing,

E

"!!!!!
m (Nn)

m
#
N̄n

$ − 1

!!!!! I{Nn−N̄n>εN̄n}

%
≤ E

"
m (Nn)

m
#
N̄n

$I{Nn>N̄n(1+ε)}

%
.

Applying Potter’s bound (Bingham, Goldie and Teugels (1987), Theorem 1.5.6 part (iii)) for each

δ > 0, there exists t > 0 such that m (y) /m (x) ≤ 2 (y/x)α+δ if y ≥ x ≥ t. Hence, for any δ > 0

there exists n0 > 0 such that N̄n ≥ t for all n ≥ n0, and therefore

E

"
m (Nn)

m
#
N̄n

$I{Nn>N̄n(1+ε)}

%
≤ 2E

"&
Nn

N̄n

'α+δ

I{Nn>N̄n(1+ε)}

%
,

≤ 2

(
E

"&
Nn

N̄n

'(α+δ)r
%)1/r

P
#!!Nn − N̄n

!! > εN̄n

$1/s
,

for any r, s > 1 such that 1/r + 1/s = 1, by Hölder’s inequality. Furthermore, because α < 1, we

can guarantee (α+ δ) r < 1 by choosing δ > 0 sufficiently small. Next, Jensen’s inequality implies

that

E

"&
Nn

N̄n

'(α+δ)r
%
≤

&
E

*
Nn

N̄n

+'(α+δ)r

= 1.

Therefore, we obtain that

E

"
m (Nn)

m
#
N̄n

$I{Nn−N̄n>εN̄n}

%
→ 0 as n → ∞,

which completes the proof.

Proof of Lemma 2

For any arrivals-only policy, Bn (∞) is stochastically bounded by a system where no matches

occur, i.e., agents leave only upon abandonment. In this case, each side of the market can be

modeled as a M/M/∞ queue, which has a Poisson (λn/η) stationary queue length distribution.

Because the total arrival rate of agents is 2λn and two agents exit upon each match, the maximum

long-run rate for matches under any policy is λn. Hence, for any arrival-only policy we have that

Un ≤ λnE [m (Pn)], where Pn is a Poisson (λn/η) random variable. Because Lemma 1 applies for

Pn, it follows that Un ≤ λnm (λn/η).

Lemma 3 For α = 0, there exists an o(n) sequence zn such that limn→∞
m(zn)
m(n) = 1.
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Proof of Lemma 3

Recall that m(t) = 0 for t ∈ [0, 1) and let us define

xn = inf

&
x ∈ (0, 1] : 1− m(xn)

m(n)
≤ x

'
.

We show that xn is o(1). Suppose that this is not true. Then, we have that lim supn xn > 0. Let

ε = lim supn xn. By Assumption 2, for all a ∈ (0, 1] and for all ε′ > 0 there exists n0(a, ε
′) such

that for all n ≥ n0 we have 1 − m(an)
m(n) ≤ ε′. Now, we pick a = ε/2 and ε′ = ε/2. Then, for each

n ≥ n0(ε/2, ε/2), we have that 1− m(εn/2)
m(n) ≤ ε/2. Hence, xn ≤ ε/2 for each n ≥ n0(ε/2, ε/2). This

implies lim supn xn ≤ ε/2 which is a contradiction.

Let zn = nxn. Because xn is o(1), it follows that zn is o(n). Further, by construction,

limn→∞
m(zn)
m(n) = 1. This completes the proof of the lemma.

Lemma 4 Suppose that {Xn (·)}n≥1 is a sequence of stochastic processes in Rd and define X∗
n (t) =

sup0≤s≤t |Xn (s)|. Assume that for each t > 0, the sequence {X∗
n (t)}n≥1 is tight. Moreover, suppose

that

Xn (t) = Xn (0) +

, t

0
bn (Xn (s)) ds+Mn (t) ,

where {bn (·)}n≥0 is a sequence of continuous functions such that bn (·) → b (·) uniformly on com-

pact sets and b (·) is locally Lipschitz, and Mn(·) is a martingale with quadratic variation [Mn] (·)

satisfying

E [[Mn] (t)] → 0

as n → ∞ for each t > 0. Finally, suppose that Xn (0) → X (0) in probability as n → ∞. Then

Xn (·) → X (·) in probability in the uniform topology on compact sets, where X (·) is the unique

solution to

X (t) = X (0) +

, t

0
b (X (s)) ds.

Proof of Lemma 4

We have that for any c > 0, on the set X∗
n (1) ≤ c < ∞, the process

Wn (t) =

, t

0
bn (Xn (s)) ds

4



satisfies the following: there exists n0 := n0 (c) < ∞ such that for each n ≥ n0 and for any

0 ≤ s < t ≤ 1, we have

|Wn (t)−Wn (s)| ≤
, t

s
|bn (Xn (r))| dr,

≤ sup
0≤r≤1

|bn (Xn (r))| |t− s| ,

≤ (1 + sup
0≤r≤1

|b (Xn (r))|)(t− s).

The last inequality follows because bn (·) → b (·) uniformly on compact sets and because of the

tightness of X∗
n (1). The Arzela-Ascoli theorem implies that Wn (·) is tight in the uniform topology.

The Burkholder-Davis-Gundy inequality implies that the martingale sequence converges to zero

uniformly on compact sets and therefore is tight. We conclude that Xn (·) must be tight in the

uniform topology. Consequently, every subsequence contains a further sub-subsequence converging

to the solution to the dynamical system

X (t) = X (0) +

, t

0
b (X (s)) ds,

which in turn has a unique solution because b (·) is locally Lipschitz.

9.2 Proof of Theorem 1

For now, let us assume that there exists a real z > 0 such that zn = zn.

We define B̄n (t) = n−1Bn (t) and S̄n (t) = n−1Sn (t). By (2)-(3) in the main text, we can

write

B̄n (t) = B̄n (0) +
N+

B (nλt)

n
−

N−
B

-
η
. t
0 Bn (r) dr

/

n

−
. t
0 I{B̄n(r−)≥z}dN

+
S (λnr)

n
−

. t
0 I{S̄n(r−)≥z}dN

+
B (nλr)

n
, (33)

S̄n (t) = S̄n (0) +
N+

S (nλr)

n
−

N−
S

-
η
. t
0 Sn (r) dr

/

n

−
. t
0 I{S̄n(r−)≥z}dÑ

+
B (λnr)

n
−

. t
0 I{B̄n(r−)≥z}dN

+
S (λnr)

n
. (34)
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We assume that B̄n (0) → B̄ (0) and S̄n (0) → S (0). Although formally the process in (33)-(34)

converges to

B̄ (t) = B̄ (0) + λt− η

, t

0
B̄ (r) dr − λ

, t

0
I{B̄(r)≥z}dr − λ

, t

0
I{S̄(r)≥z}dr, (35)

S̄ (t) = S̄ (0) + λt− η

, t

0
S̄ (r) dr − λ

, t

0
I{B̄(r)≥z}dr − λ

, t

0
I{S̄(r)≥z}dr, (36)

this dynamical system is non-standard because the indicator functions are not continuous. Hence,

we need to study this system as the solution to a certain Skorokhod problem. In particular, we can

write

B̄ (t) = B̄ (0) + λt− η

, t

0
B̄ (r) dr − LB̄

z (t)− LS̄
z (t) , (37)

S̄ (t) = S̄ (0) + λt− η

, t

0
S̄ (r) dr − LB̄

z (t)− LS̄
z (t) , (38)

where LB̄
z (·) , LS̄

z (·) are nondecreasing processes such that LB̄
z (0) = LS̄

z (0) = 0 and

, t

0

#
B̄ (r)− z

$
dLB̄

z (r) =

, t

0

#
S̄ (r)− z

$
dLS̄

z (r) = 0,

and B̄ (t) , S̄ (t) ≤ z. Hence, LB̄
z (·) and LS̄

z (·) are minimal nondecreasing processes that constrain

the dynamics of B̄ (·) and S̄ (·) to stay below z.

The existence and uniqueness of the solution to the dynamical system in (37)-(38) is studied

in §9.2.1, which appears at the end of the proof of this theorem. Also, we see that if z < λ/η, the

equilibrium point of (37)-(38) is (B̄ (∞) , S̄ (∞)) = (z, z) .

6



Note that

B̄n (t) = B̄n (0) + λt− η

, t

0
B̄n (r) dr

−
. t
0 I{B̄n(r−)≥z}dN

+
B (λnr)

n
−

. t
0 I{S̄n(r−)≥z}N

+
S (λnr)

n

+
N+

B (nλt)− nλt

n
+

η
. t
0 nB̄n (r) dr −N−

B

-
η
. t
0 nB̄n (r) dr

/

n

+

. t
0 I{B̄n(r−)≥z}dN

+
B (λnr)

n
−

. t
0 I{B̄n(r−)≥z}dN

+
S (λnr)

n

+

. t
0 I{S̄n(r−)≥z}dN

+
S (λnr)

n
−

. t
0 I{S̄n(r−)≥z}dN

+
B (nλr)

n
,

= B̄n (0) + λt− η

, t

0
B̄n (r) dr − LB̄n

z (t)− LS̄n
z (t)

+MB
n,1 (t) +MB

n,2 (t) +MB
n,3 (t) +MB

n,4 (t) , (39)

where

MB
n,1 (t) =

N+
B (nλt)− nλt

n
,

MB
n,2 (t) =

η
. t
0 nB̄n (r) dr −N−

B

-
η
. t
0 nB̄n (r) dr

/

n
,

MB
n,3 (t) =

. t
0 I{B̄n(r−)≥z}dN

+
B (λnr)

n
−

. t
0 I{B̄n(r−)≥z}dN

+
S (λnr)

n
,

MB
n,4 (t) =

. t
0 I{S̄n(r−)≥z}dN

+
S (λnr)

n
−

. t
0 I{S̄n(r−)≥z}dN

+
B (nλr)

n
.

Similarly,

S̄n (t) = S̄n (0) + λt− η

, t

0
S̄n (r) dr − LB̄n

z (t)− LS̄n
z (t)

+MS
n,1 (t) +MS

n,2 (t) +MS
n,3 (t) +MS

n,4 (t) . (40)

In (39)-(40), the processes
0
MB

n,i

1

n≥1
and

0
MS

n,i

1

n≥1
are martingales for i = 1, 2, 3, 4 such that

E

*
sup

0≤r≤t

!!MB
n,i (r)

!!2
+
+ E

*
sup

0≤r≤t

!!MS
n,i (r)

!!2
+
= O

#
n−1

$
,

which is obtained by upper bounding B̄n (·) by that of a system where no matches occur, i.e., agents

leave only upon abandonment so that either side of the market can be modeled as an M/M/∞

7



queue, and then applying Doob’s maximal inequalities. Therefore, we have that

MB
n,i,M

S
n,i → 0

uniformly on compact sets as n → ∞ in probability for i = 1, 2, 3, 4.

The Lipschitz continuity property of the Skorokhod map, which is established in Section

§9.2.1, implies that

S̄n (·) → S̄ (·) , B̄n (·) → B̄ (·)

uniformly on compact sets in probability.

The dynamical system describing
#
B̄, S̄

$
has a unique attractor, which is the point (z, z) if

λ/η ≥ z, given the initial condition B̄ (0) ≤ z, S̄ (0) ≤ z.

To show that the limit interchange (t → ∞ and n → ∞) holds, we begin by upper bounding

with a system with no matching, which implies that the steady-state number of buyers in the system

is less than or equal to a Poisson random variable with rate λn/η. It follows that E
2
B̄n (∞)

3
≤ λ/η,

which in turn implies the uniformity property,

sup
n≥1

E
2
B̄n (∞)

3
< ∞. (41)

Tightness of B̄n (∞) over n follows from (41). Therefore, by Prohorov’s theorem, every

subsequence admits a further sub-subsequence which converges weakly; so, by selecting such sub-

subsequence we may assume that B̄n (0) → Z. Moreover, by the Skorokhod embedding, we can

assume that this convergence occurs almost surely.

Next, we have that B̄n (·) → B̄ (·) on compact sets if B̄n (0) → Z as n → ∞. Let us

select B̄n (0) in stationarity (i.e. equal in distribution to B̄n (∞)). By stationarity, for any fixed

t > 0, B̄n (t) → B̄ (t) = Z in probability and therefore Z must be a stationary distribution of the

dynamic system B̄ (·). But the stability point of B̄ (·) is unique and therefore Z = z. Thus, we

must have that
#
B̄n (∞) , S̄n (∞)

$
→ (z, z) almost surely as n → ∞. Consequently, since the limit

is independent of the subsequence, we conclude that we can exchange limits and expectations.

8



Our next goal is to compute the utility rate. Note that if
#
B̄n (0) , S̄n (0)

$
follows the station-

ary distribution then taking expectations on both sides of equation (2) of the main text yields

ηE
#
B̄n (∞)

$
= λ{P

#
S̄n (∞) < z

$
− P

#
B̄n (∞) ≥ z

$
}. (42)

Observe that

I{S̄n(∞)<z} = I{S̄n(∞)<z,B̄n(∞)≥z} + I{S̄n(∞)<z,B̄n(∞)<z},

= I{B̄n(∞)≥z} + I{B̄n(∞)<z,S̄n(∞)<z}. (43)

Equations (42)-(43) imply that

ηE
#
B̄n (∞)

$
= λP

#
B̄n (∞) < z, S̄n (∞) < z

$
. (44)

Taking the limit in (44) as n → ∞, we conclude that

ηz

λ
= lim

n→∞
P
#
B̄n (∞) < z, S̄n (∞) < z

$
. (45)

Equation (43) also implies that

I{B̄n(∞)≥z} + I{S̄n(∞)≥z} = 1− I{B̄n(∞)<z,S̄n(∞)<z}. (46)

By symmetry, we conclude from (45)-(46) that

lim
n→∞

P
#
B̄n (∞) ≥ z

$
=

1

2

-
1− ηz

λ

/
. (47)

Equation (47) allows us to compute the utility rate:

Up
n(zn) = 2λnE

2
m (Bn (∞)) I{Bn(∞)≥zn}

3
,

= 2λnE [m (Bn (∞)) |Bn (∞) ≥ zn]P (Bn (∞) ≥ zn) ,

= λnm (zn)
-
1− ηz

λ

/
(1 + o (1)) (48)

as n → ∞, where the last equality follows from the use of Lemma 1 and the observation that

P (|Bn (∞)− zn| ≥ εn|Bn (∞) ≥ zn) → 0 as n → ∞.

9



Thus, by equation (1) in the main text and (48),

Up
n(zn)

nm(n)
= λzα

-
1− ηz

λ

/
(1 + o (1)) . (49)

We first consider the case where α > 0. Maximizing the right side of (49) with respect to z

implies that among all policies such that zn = Ω(n), setting zn = z∗n is asymptotically optimal.

Further, for zn = o (n), using the same technique based on the fluid analysis, one can show that

Up
n(zn)

nm(n) = o(t); details are omitted for brevity. This completes the proof for α > 0.

Finally, we consider the case where α = 0. To make the dependence of Bn(∞) on zn more

explicit, for the rest of the proof we denote Bn(∞) as B
(zn)
n (∞). Using the fluid limit analysis

similar to above, for any sequence of thresholds zn that is o (n), we can show that E[B
(zn)
n (∞)] is

o(n), as follows. In the pre-limit, in particular in equations (33)-(34) and (39)-(40), we replace z

with zn/n, and then using essentially the same arguments as above we obtain the fluid limit where
-
B̄

(zn)
n (∞) , S̄

(zn)
n (∞)

/
→ (0, 0) almost surely. Further, by using the same arguments as those used

to obtain (47), we can show that

lim
n→∞

P
-
B(zn)

n (∞) ≥ zn

/
=

1

2
. (50)

By symmetry, we also have

lim
n→∞

P
-
S(zn)
n (∞) ≥ zn

/
=

1

2
. (51)

Now consider the nth system, i.e., the system with the arrival rate of buyers equal to λn. For

k = 1, 2, . . . , define I
(n)
k as follows: I

(n)
k is equal to 1 if the kth arrival of buyers sees at least zn

sellers upon arrival and is equal to 0 otherwise. Then PASTA (Poisson Arrivals See Time Averages)

implies that

lim
k→∞

1

k

k4

j=1

I
(n)
j =

1

2
+ o(1).

For each k = 1, 2, . . . , and for each n = 1, 2, . . ., let R
(n)
k be an independent random variable with

distribution Fzn . Then, again by PASTA, we have

lim
k→∞

1

k

k4

j=1

I
(n)
j R

(n)
j = m(zn)

&
1

2
+ o(1)

'
.

10



However, by Assumption 1 and by symmetry, with probability 1 we have

Up
n(zn) ≥ 2λn lim

k→∞

1

k

k4

j=1

I
(n)
j R

(n)
j . (52)

Thus, we have Up
n(zn) ≥ λnm(zn) (1 + o(1)) . Consequently, for any sequence zn = o(n) such that

lim
n→∞

m(zn)

m(n)
= 1,

we would have that Up
n(zn) ≥ λnm(n) (1 + o(1)). Lemma 3 guarantees that such a sequence exists.

Combining these results with the upper bound in Lemma 2 completes the proof for α = 0,

and thus also the overall proof of Theorem 1.

9.2.1 Skorokhod Problem

In this subsection, we consider the existence and uniqueness of the system of differential equations

B̄ (t) = B̄ (0)− η

, t

0

&
B̄ (r)− λ

η

'
dr − LB̄

z (t)− LS̄
z (t) ,

S̄ (t) = S̄ (0)− η

, t

0

&
S̄ (r)− λ

η

'
dr − LB̄

z (t)− LS̄
z (t) ,

where LB̄
z (·) , LS̄

z (·) are nondecreasing processes such that LB̄
z (0) = LS̄

z (0) = 0,

, t

0

#
B̄ (r)− z

$
dLB̄

z (r) =

, t

0

#
S̄ (r)− z

$
dLS̄

z (r) = 0,

and B̄ (t) , S̄ (t) ≤ z. Hence, LB̄
z (·) and LS̄

z (·) are minimal nondecreasing processes that constrain

the dynamics of B̄ (·) and S̄ (·) to stay below z.

In order to use explicit expressions for Skorokhod problems studied in the positive orthant,

we introduce a change of coordinates. Defining B̄z (t) = z − B̄ (t), S̄z (t) = z − S̄ (t) and λ̄z =

λ/η − z ≥ 0, we have that

B̄z (t) = B̄z (0)− η

, t

0

#
B̄z (r) + λ̄z

$
dr + L (t) ≥ 0,

S̄z (t) = S̄z (0)− η

, t

0

#
S̄z (r) + λ̄z

$
dr + L (t) ≥ 0,

where
, t

0
min

#
B̄z (r) , S̄z (r)

$
dL (r) = 0, L (0) = 0.
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Further, if we define

Z(t) = min

&
B̄z (0)− η

, t

0

#
B̄z (r) + λ̄z

$
dr, S̄z (0)− η

, t

0

#
S̄z (r) + λ̄z

$
dr

'
,

then

Y (t) := min
#
B̄z (t) , S̄z (t)

$

= Z (t) + L (t) ,

which implies that

Y (t) = Z (t) + max
0≤s≤t

{−Z (s) , 0} ,

L (t) = max
0≤s≤t

5
−B̄z (0) + η

, s

0

#
B̄z (r) + λ̄z

$
dr,−S̄z (0) + η

, s

0

#
S̄z (r) + λ̄z

$
dr, 0

6
.

We then obtain L
#
t; B̄z, S̄z

$
:= L (t), to emphasize the dependence on

#
B̄z, S̄z

$
, yielding

B̄z (t) = B̄z (0) + η

, t

0

#
B̄z (r) + λ̄z

$
dr + L

#
t; B̄z, S̄z

$
, (53)

S̄z (t) = S̄z (0) + η

, t

0

#
S̄z (r) + λ̄z

$
dr + L

#
t; B̄z, S̄z

$
. (54)

We need to show that (53)-(54) has a unique solution. We first argue uniqueness. Assume that

there exists another solution that we shall denote as
#
B̄′

z, S̄
′
z

$
and consider ∆B = B̄z − B̄′

z and

∆S = S̄z − S̄′
z. Suppose that ∆S (0) = ∆B (0) = 0. Then

∆B (t) = η

, t

0
∆B (r) dr + L

#
t; B̄z, S̄z

$
− L

#
t; B̄′

z, S̄
′
z

$
, (55)

∆S (t) = η

, t

0
∆S (r) dr + L

#
t; B̄z, S̄z

$
− L

#
t; B̄′

z, S̄
′
z

$
. (56)

Now, consider any real numbers a, b, c, a′, b′, c′. Suppose without loss of generality that a =

max (a, b, c) ≥ max (a′, b′, c′). Then, since max (a′, b′, c′) ≥ a′, we conclude that

0 ≤ a−max
#
a′, b′, c′

$
≤ a− a′,

which implies

!!max (a, b, c)−max
#
a′, b′, c′

$!! ≤
!!a− a′

!!+
!!b− b′

!!+
!!c− c′

!! .
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Therefore, if D (t) = |∆B (t)|+ |∆S (t)|, we have, for example, that

!!L
#
t; B̄z, S̄z

$
− L

#
t; B̄′

z, S̄
′
z

$!! ≤ η

, s

0
|∆B (r)| dr + η

, s

0
|∆S (r)| dr.

As a result, adding together (55) and (56), and using the triangle inequality we conclude that

D (t) ≤ 2η

, t

0
D (r) dr.

Because D (0) = 0, a direct application of Gronwall’s inequality yields that D (t) = 0 for all t > 0,

and uniqueness follows.

Now we argue the existence of a solution to (53)-(54). The construction follows by applying

a standard Picard iteration. Let

Bt (B,S) = B (0) + η

, t

0

#
B (r) + λ̄z

$
dr + L (t;B,S) ,

St (B,S) = S (0) + η

, t

0

#
S (r) + λ̄z

$
dr + L (t;B,S) .

Observe that the map (B,S) → (B,S) is Lipschitz continuous with respect to the uniform topology

over any compact time interval [0, T ], using the corresponding uniform metric

‖(B,S)‖[0,T ] = sup
0≤t≤T

(|B (t)|+ |S (t)|) .

Define B
(0)
z (t) = B

(0)
z (0) , S

(0)
z (t) = S

(0)
z (0), and iteratively, for m ≥ 1,

B(m)
z (t) = Bt(B

(m−1)
z , S(m−1)

z ); S(m)
z (t) = St(B

(m−1)
z , S(m−1)

z ).

Noting that B
(m)
z (0) = B

(m−1)
z (0) and S

(m)
z (0) = S

(m−1)
z (0), we have

|B(m)
z (t)−B(m−1)

z (t) |+ |S(m)
z (t)− S(m−1)

z (t) |

≤ 3η

, t

0
|B(m−1)

z (r)−B(m−2)
z (r) |+ |S(m−1)

z (r)− S(m−2)
z (r) |dr.

Consequently, we conclude that

777(B(m)
z , S(m)

z )− (B(m−1)
z , S(m−1)

z )
777
[0,T ]

≤ 3ηT
777(B(m−1)

z , S(m−1)
z )− (B(m−2)

z , S(m−2)
z )

777
[0,T ]

.
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Choosing 0 < T < 1/(3η) we can deduce – by applying successive iterations and the triangle

inequality – that {(B(m)
z , S

(m)
z ) : m ≥ 1} forms a Cauchy sequence in the space of continuous func-

tions endowed with the uniform topology, which is a complete separable metric space. Therefore, by

continuity of the map (B,S) → (B,S), the limiting sequence must satisfy (53). The construction

can be applied sequentially to consecutive intervals of size less than 1/(3η).

9.3 Proof of Theorem 2

For now, we assume that the thresholds satisfy

vn
m(n)

→ v for some v ≥ 0.

We consider a Poisson-flow representation of the scaled utility-based dynamics, whose validity is

demonstrated in §9.3.1. In particular, it suffices to study the scaled processes B̄n (t) = n−1Bn (t)

and S̄n (t) = n−1Sn (t), which give rise to the representation

B̄n (t) = B̄n (0) +
N+

B

-
λn

. t
0 FSn(r) (vn) dr

/

n
−

N−
B

-
η
. t
0 Bn (r) dr

/

n

−
Ñ+

S

-
λn

. t
0

#
1− FBn(r) (vn)

$
dr
/

n
, (57)

S̄n (t) = S̄n (0) +
N+

S

-
λn

. t
0 FBn(r) (vn) dr

/

n
−

N−
S

-
η
. t
0 Sn (r) dr

/

n

−
Ñ+

B

-
λn

. t
0

#
1− FSn(r) (vn)

$
dr
/

n
, (58)

where N+
B (·) , Ñ+

B (·) , N−
B (·) , N+

S (·) , Ñ+
S (·) , N−

S (·) are independent Poisson processes with unit

mean.

Note that under Assumption 3, we have

Fnw (m (n) t) = P (M (nw) ≤ m (n) t) ,

= P (Xm (nw) ≤ m (n) t) (1 + o (1)) ,

= e−κw/t1/α (1 + o (1)) .
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Using this result, the putative fluid limit of (57)-(58) is given by

B̄ (t) = B̄ (0) + λ

, t

0
e−κS̄(r)/v1/α − η

, t

0
B̄ (r) dr − λ

, t

0

-
1− e−κB̄(r)/v1/α

/
dr,

S̄ (t) = S̄ (0) + λ

, t

0
e−κB̄(r)/v1/α − η

, t

0
S̄ (r) dr − λ

, t

0

-
1− e−κS̄(r)/v1/α

/
dr.

We proceed in four steps. The first step is to obtain a martingale decomposition similar to

that given in the proof of Theorem 1 part ii). The martingales will converge to zero on compact

sets. The second step is to show that
8#

B̄n(·), S̄n(·)
$9

n≥1
is tight in the Skorokhod topology using

the technique developed in Ethier and Kurtz (2005). The third step is to show that the putative

fluid limit has a unique solution. The fourth step is to show that the ordinary differential equation

(ODE) describing the fluid limit has a unique stationary point.

Together, these four steps imply that any subsequence of the sequence
8#

B̄n(·), S̄n(·)
$9

n≥1

will contain a subsequence that converges (by tightness) to the unique solution of the above

ODE, and therefore the fluid limit convergence holds. Further, since supnE[B̄n(∞)] < ∞ fol-

lows easily from the upper bound where no matching happens, we have that any subsequence of

8
(B̄n(∞), S̄n(∞))

9
n≥1

will contain a subsequence that converges.

Now, consider the stationary versions of the process (Bn(.), Sn(.)). By stationarity, we have

that if any subsequence of
8
(B̄n(∞), S̄n(∞))

9
n≥1

converges then it has to converge to (z̄, z̄),

which is the unique stationary point of the dynamical system describing (B̄(t), S̄(t)). Thus,

8
(B̄n(∞), S̄n(∞))

9
n≥1

converges to (z̄, z̄).

Step 1: Consider the martingales

MB
n,1(t) =

N+
B

-
λn

. t
0 FSn(r) (vn) dr

/

n
− λ

, t

0
FSn(r) (vn) dr,

MB
n,2(t) =

N−
B

-
η
. t
0 Bn (r) dr

/

n
− η

, t

0
B̄n (r) dr,

MB
n,3(t) =

Ñ+
S

-
λn

. t
0

#
1− FBn(r) (vn)

$
dr
/

n
− λ

, t

0

#
1− FBn(r) (vn)

$
dr,
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so that (57) can be expressed as

B̄n(t) = B̄n(0) + λ

, t

0
FSn(r) (vn)− η

, t

0
B̄n (r) dr − λ

, t

0

#
1− FBn(r) (vn)

$
dr

+MB
n,1(t)−MB

n,2(t)−MB
n,3(t).

As argued in the proof of Theorem 1 part ii), using the upper bound on Bn(t) vis-a-vis no

matching and Doob’s maximal inequality, we get

E

*
sup

0≤r≤t
|Mn,i (r)|2

+
= O

#
n−1

$
.

Thus, for i = 1, 2, 3, MB
n,i → 0 as n → ∞ uniformly on compact sets.

Further, because FSn(r) lies in [0, 1] w.p. 1, from Assumption 3 the process
. t
0 FSn(r) (vn) dr−

. t
0 exp

#
−κS̄n (r) /v

1/α
$
dr converges to 0 uniformly over compact sets. Similarly,

, t

0

#
1− FBn(r) (vn)

$
dr −

, t

0

-
1− e−κB̄n(r)/v1/α

/
dr

converges to 0 uniformly over compact sets.

Analogously define martingales MS
n,i for i = 1, 2, 3 for S̄n. Again, for i = 1, 2, 3, MS

n,i → 0 as

n → ∞ uniformly on compact sets.

Because FSn(r) lies in [0, 1] w.p.1, the quadratic variations [Mn,1(t)] and [Mn,3(t)] are bounded

from above by the quadratic variation of n−1N+
B (λnt), which tends to 0 as n → ∞. We now show

that [Mn,2(t)] also tends to 0 as n → ∞ for a given t. Note that Bn(.) is bounded from above

by the process corresponding to no matching, which has O(n) mean. Thus, the mean number of

jumps in n−1N−
B

-
η
. t
0 Bn (r) dr

/
is O(n). Further, the size of each jump is 1/n with probability 1.

Hence, the quadratic variation [Mn,2(t)] tends to 0 as n → ∞.

Similarly, the quadratic variations of MS
n,i(t) for i = 1, 2, 3 also tend to 0 as n → ∞.

Thus, from Lemma 4 in §9.1 we have that

B̄n (·) → B̄ (·) and S̄n (·) → S̄ (·)

uniformly on compact sets in probability.
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Step 2: Using Theorem 7.2 of Chapter 3 in Ethier and Kurtz (2005), we show that the family

8#
(B̄n(t) : t ≥ 0), (S̄n(t) : t ≥ 0)

$9
n≥1

is tight in the Skorokhod topology. The first condition of

Theorem 7.2 of Ethier and Kurtz (2005) holds easily since for each t we have that B̄n(t) and S̄n(t)

are both stochastically bounded from above by 1/n times Poisson distributed random variables

with mean λnt, each of which concentrates as n → ∞.

We now show that the second condition of Theorem 7.2 of Chapter 3 in Ethier and Kurtz

(2005) holds as well. Note that, for each n, the times of positive jumps in Bn are a subset of jump

times in a Poisson process of rate λn. Also, the departures from Bn may occur either when a

customer in Bn abandons or when a customer arrives in Sn. Further, the times of customer aban-

donment is a subset of departure times in a M/M/∞ queue, which – due to the time-reversibility

of the M/M/∞ queue – form a Poisson process with rate λn (plus a finite number of departures

due to finite initial conditions). Thus, the times of negative jumps in Bn are a subset of jump times

in a Poisson process of rate λn. Also, w.p.1, each jump is of size 1.

Thus, the modulus of continuity (see page 122 of Ethier and Kurtz 2005) of B̄n is less than

that of n−1AB
n where AB

n is a Poisson process of rate 3λn. Similarly, the modulus of continuity

of S̄n is less than that of n−1AS
n where AS

n is a Poisson process of rate 3λn. Therefore, it is

enough to verify the second condition of Theorem 7.2 of Chapter 3 in Ethier and Kurtz (2005) for

8#
(n−1ĀB

n (t) : t ≥ 0), (n−1ĀS
n(t) : t ≥ 0)

$9
n≥1

, which is easy to do.

Step 3: Recall that B̄n (0) → B̄ (0) and S̄n (0) → S (0). Because the dynamical system

describing B̄ (t) and S̄ (t) is an ODE with Lipschitz coefficients, it has a unique solution.

Step 4: Using the fluid limit characterization, the fundamental theorem of calculus, and

symmetry, for each stationary solution to the ODE we have

0 = λe−κx̄/v1/α − ηx̄− λ(1− e−κx̄/v1/α),

= −ηx̄− λ+ 2λe−κx̄/v1/α . (59)
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Solving (59) for v, we define for x̄ ∈ (0,λ/η),

v (x̄) =

:

; κx̄

ln
-

2λ
ηx̄+λ

/

<

=
α

. (60)

We can also uniquely solve for x̄ (v) for v ∈ (0,∞) by finding the inverse of (60), which yields

x̄ (v) = −λ

η
+

v1/α

κ
W

&
2λκ

ηv1/α
exp

&
λκ

ηv1/α

''
, (61)

whereW (·) is the Lambert W function. Although we can work with either v ∈ (0,∞) or x̄ ∈ (0,λ/η)

when optimizing the asymptotic utility rate, it will be more convenient to optimize in terms of x̄

and then find the optimal utility threshold using (60), as we now explain.

For each v ≥ 0, we have established that
8
(B̄n(∞), S̄n(∞))

9
n≥1

converges to a unique (x̄, x̄),

which can be characterized as above. Observe that x̄(v) → λ/η as v → ∞. Also, again using (59),

we have that x̄(v) → 0 as v → 0, which is same as the limit under the greedy policy. Thus, if vn is

o(n) then B̄n(∞) is also o(n).

Assumption 3 implies that

E
2
E[M (Bn (∞)) I{M(Bn(∞))≥vn}|Bn (∞)]

3

∼ E
2
E[m (Bn (∞))XI{m(Bn(∞))X≥vn}|Bn (∞)]

3
,

∼ m (nx̄(v))E
2
XI{m(nx̄(v))X≥vn}

3
,

∼ m (nx̄(v))E
2
XI{x̄(v)αX≥v}

3
.

Thus, by (??) in the main text, the utility rate satisfies

Uu
n (vn) = 2λnE

2
E[M (Bn (∞)) I{M(Bn(∞))≥vn}|Bn (∞)]

3
,

= 2λnm (nx̄(v))E

*
XI!

X≥ v
x̄(v)α

"
+
(1 + o (1)) .

Assumption 2 implies that Uu
n (vn)/m(n) is o(n) if vn = o(n), and is Θ(n) if vn is Θ(n). Furthermore,

E
2
XI{X≥v/x̄(v)α}

3
→ 0 if v → ∞. Thus, Uu

n (vn)/m(n) is o(n) if vn = ω(n) (f(n) is ω(n) if there

exist c > 0 and an integer no ≥ 1 such that f(n) > cn for all integers n ≥ no). Consequently, the

optimal policy can be computed either as

sup
v∈(0,∞)

2λx̄ (v)αE

*
XI!

X≥ v
x̄(v)α

"
+
,
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or, in terms of x̄, as

sup
x̄∈(0,λ/η)

2λx̄αE

*
XI!

X≥ v(x̄)
x̄α

"
+
, (62)

and we will solve (62).

Recall that by Assumption 3, X =
#
κ−1T

$−α
, where T is an exponential random variable

with mean one. It follows that

E

*
XI!

X≥ v(x̄)
x̄α

"
+

= E

"
#
κ−1T

$−α
I#

γx̄

v(x̄)1/α
≥T

$

%
, (63)

= κα
, κx̄/v(x̄)1/α

0
t−αe−tdt, (64)

where by (60) the upper integration limit in (64) is

κx̄

v (x̄)1/α
= ln

&
2λ

ηx̄+ λ

'
. (65)

Note that the objective function of (62) is zero at x̄ = 0 and at x̄ = λ/η (taking the limits from

the left and right, respectively). Therefore, since the right side of (62) is positive for x̄ ∈ (0,λ/η),

any global maximizer in (62) must be a stationary point. This, in turn, implies that any global

maximizer must satisfy

0 =
d

dx̄
x̄α

, κx̄/v(x̄)1/α

0
t−αe−tdt,

= x̄α
d

dx̄

, κx̄/v(x̄)1/α

0
t−αe−tdt+ αx̄α−1

, κx̄/v(x̄)1/α

0
t−αe−tdt.

Equation (65) implies that

d

dx̄

κx̄

v (x̄)1/α
=

d

dx̄
ln

&
2λ

ηx̄+ λ

'
= − η

(ηx̄+ λ)
. (66)

Therefore,

d

dx̄

, κx̄/v(x̄)1/α

0
t−αe−tdt =

(
κx̄

v (x̄)1/α

)−α

exp

&
ln

&
ηx̄+ λ

2λ

''
d

dx̄

κx̄

v (x̄)1/α
,

= − v(x̄)η

2λ(κx̄)α
,
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which implies that

αx̄−1

, κx̄/v(x̄)1/α

0
t−αe−tdt =

d

dx̄

, κx̄/v(x̄)1/α

0
t−αe−tdt,

=
v(x̄)η

2λ(κx̄)α
,

or equivalently,

v (x̄) η

2λκα
= αx̄α−1

, κx̄/v(x̄)1/α

0
t−αe−tdt. (67)

Because α ∈ (0, 1), the right side of (67) is decreasing and continuous in (0,λ/η), whereas by (66)

the left side of (67) is increasing in the same range. Moreover, the left side of (67) vanishes at zero

and the right side vanishes at λ/η. We conclude that there a unique solution x∗ to (67). Finally,

the optimal policy is given by v (x∗) in (60) and the conclusion of the theorem follows directly by

substituting in the expresson for x∗ into (62).

9.3.1 Markov Dynamics of Utility-Based Process

In this subsection, we show that the actual dynamics of the utility threshold policy are equivalent

to the Poisson-flow representation given by

Bn (t) = Bn (0) +N+
B

&
λn

, t

0
FSn(r) (vn) dr

'
−N−

B

&
η

, t

0
Bn (r) dr

'

−Ñ+
S

&
λn

, t

0

#
1− FBn(r) (vn)

$
dr

'
, (68)

Sn (t) = Sn (0) +N+
S

&
λn

, t

0
FBn(r) (vn) dr

'
−N−

S

&
η

, t

0
Sn (r) dr

'

−Ñ+
B

&
λn

, t

0

#
1− FSn(r) (vn)

$
dr

'
, (69)

where N+
B , Ñ+

B , N+
S , Ñ+

S , N−
B , N−

S are all independent Poisson processes with unit mean. For sim-

plicity, we shall let n = 1 and λ = η = 1.

Recall that the actual dynamics under the utility threshold policy are governed by the equa-
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tions

>B (t) = >B (0) +

N+
B (t)4

j=1

I%
max

!S(AB
j−)

i=1 V B
i,j≤v

& −
N+

S (t)4

j=1

I%
max

!B(AS
j−)

i=1 V S
i,j>v

& (70)

−N−
B

&, t

0

>B (r−) dr

'
,

>S (t) = >S (0) +

N+
S (t)4

j=1

I%
max

!B(AS
j−)

i=1 V S
i,j≤v

& −
N+

B (t)4

j=1

I%
max

!S(AS
j−)

i=1 V B
i,j>v

&

−N−
S

&, t

0

>S (r) dr

'
, (71)

where
0
V B
i,j : i ≥ 1, j ≥ 1

1
and

0
V S
i,j : i ≥ 1, j ≥ 1

1
form two independent arrays of i.i.d. random

variables with CDF F (·). In addition,
0
AB

j : j ≥ 1
1
is the sequence of arrival times associated with

N+
B and

0
AS

j : j ≥ 1
1

is the sequence of arrival times associated with N+
S . Because of the mutual

independence among the V B
i,js, the V

S
i,js and all of the unit rate Poisson processes, N+

B , N+
S , N−

B , N−
S ,

it follows that the process
-
>B, >S

/
is Markovian and is non-explosive because each of its coordinates

(i.e. >B and >S, respectively) can be bounded by independent infinite server queues, simply by setting

v = ∞. Consequently, this Markov process is well defined.

We have introduced a slight inconsistency in the notation in this subsection only, since we

are now using (B̃, S̃) to denote the actual dynamics. Ultimately, this is not important because,

as our analysis in this subsection demonstrates, these are equivalent representations. The strategy

consists of showing that the generators (or rate matrices) of the processes coincide.

Let f : Z+ × Z+ → R be any bounded function and note that (by standard properties of the

Poisson process),
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E [f (B (h) , S (h))− f (B (0) , S (0)) |B (0) , S (0)]

= E

*, h

0
[f (B (t−) + 1, S (t−))− f (B (t−) , S (t−))] dN

+
B

&, t

0
FS(r) (v) dr

'
|B (0) , S (0)

+

+ E

*, h

0
[f (B (t−)− 1, S (t−))− f (B (t−) , S (t−))] dN

−
B

&, t

0
B (r) dr

'
|B (0) , S (0)

+

+ E

*, h

0
[f (B (t−)− 1, S (t−))− f (B (t−) , S (t−))] dÑ

+
S

&, t

0

#
1− FB(r) (v)

$
dr

'
|B (0) , S (0)

+

+ E

*, h

0
[f (B (t−) , S (t−) + 1)− f (B (t−) , S (t−))] dN

+
S

&, t

0
FB(r) (v) dr

'
|B (0) , S (0)

+

+ E

*, h

0
[f (B (t−) , S (t−)− 1)− f (B (t−) , S (t−))] dN

−
S

&, t

0
S (r) dr

'
|B (0) , S (0)

+

+ E

*, h

0
[f (B (t−) , S (t−)− 1)− f (B (t−) , S (t−))] dÑ

+
B

&, t

0

#
1− FS(r) (v)

$
dr

'
|B (0) , S (0)

+

+ o (h) as h → 0. (72)

Since

M0 (t) = N+
B

&, t

0
FS(r) (v) dr

'
−

, t

0
FS(r) (v) dr, (73)

is a martingale, we have that

E

*, h

0
[f (B (t−) + 1, S (t−))− f (B (t−) , S (t−))] dN

+
B

&, t

0
FS(r) (v) dr

'
|B (0) , S(0)

+

= E

*, h

0
[f (B (t−) + 1, S (t−))− f (B (t−) , S (t−))]FS(t) (v) dt|B (0) , S(0)

+
,

= [f (B (0) + 1, S (0))− f (B (0) , S (0))]FS(0) (v)h+ o (h) as h → 0.

Similarly, we can evaluate each of the expectations appearing in the right side of (72); e.g., the

second and third expectations are

E

*, h

0
[f (B (t−)− 1, S (t−))− f (B (t−) , S (t−))] dN

−
B

&, t

0
B (r) dr

'
|B (0) , S(0)

+
(74)

+ E

*, h

0
[f (B (t−)− 1, S (t−))− f (B (t−) , S (t−))] dÑ

+
S

&, t

0

#
1− FB(r) (v)

$
dr

'
|B (0) , S(0)

+

= [f (B (0)− 1, S (0))− f (B (0) , S (0))]
2
B (0) +

#
1− FB(0) (v)

$3
h+ o (h) as h → 0.

The above calculations show that the key to verifying that two well-defined Markov jump

processes with unit-size jumps are identical in law (i.e., have the same generator) is showing that
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the corresponding compensators of the associated point processes agree (i.e., they depend on the as-

sociated processes in the same way). The corresponding martingales that identify the compensators

are, in addition to M0 in (73),

M1 (t) = N−
B

&, t

0
B (r) dr

'
−
, t

0
B (r) dr,

M2 (t) = Ñ+
S

&, t

0

#
1− FB(r) (v)

$
dr

'
−

, t

0

#
1− FB(r) (v)

$
dr,

M3 (t) = N+
S

&, t

0
FB(r) (v) dr

'
−

, t

0
FB(r) (v) dr,

M4 (t) = N−
S

&, t

0
S (r) dr

'
−
, t

0
S (r) dr,

M5 (t) = Ñ+
B

&, t

0

#
1− FS(r) (v)

$
dr

'
−

, t

0

#
1− FS(r) (v)

$
dr.

To identify the corresponding compensators of the actual dynamics of the utility threshold

policy, we express these dynamics by means of a point process representation and then compute

the corresponding compensators with respect to the σ-field generated by the population processes

(buyers and sellers).

We need to study the compensator of the point processes

N+
B (t)4

j=1

I%
max

!S(AB
j−)

i=1 V B
i,j≤v

&, (75)

N+
S (t)4

j=1

I%
max

!B(AS
j−)

i=1 V S
i,j>v

&, (76)

N+
S (t)4

j=1

I%
max

!B(AS
j
−)

i=1 V S
i,j≤v

&, (77)

N+
B (t)4

j=1

I%
max

!S(AB
j

−)

i=1 V B
i,j>v

&, (78)

with respect to the filtration generated by the processes >B (·) and >S (·), which we shall denote

as G = {Gt : t ≥ 0}. We claim that for any t, r > 0, the conditional expectation of (75) can be
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expressed as

E

?

@A
N+

B (t+r)4

j=N+
B (t)+1

I%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD = E

*, t+r

t
F'S(u) (v) du|Gt

+
.

By Fubini’s theorem, because every term is nonnegative in the second equality in the following

display, we have that

E

?

@A
N+

B (t+r)4

j=N+
B (t)+1

I%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD = E

?

@A
∞4

j=1

I{t<AB
j ≤t+r}I

%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD ,

=

∞4

j=1

E

?

@AI{t<AB
j ≤t+r}I

%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD .

Note that for each j ≥ 1, AB
j is a stopping time, and therefore, by the tower property in the

second equality,

E

?

@AI{t<AB
j ≤t+r}I

%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD

=

, t+r

t
E

"
I#

max
!S(u−)
i=1 V B

i,j≤v

$|Gt, A
B
j = u

%
P
#
AB

j ∈ du|Gt

$
,

=

, t+r

t
E

"
E

"
I#

max
!S(u−)
i=1 V B

i,j≤v

$|Gu−, A
B
j = u

%
|Gt, A

B
j = u

%
P
#
AB

j ∈ du|Gt

$
,

=

, t+r

t
E
E
F'S(u−)

(v) |Gt, A
B
j = u

F
P
#
AB

j ∈ du|Gt

$
,

= E
E
I{t<AB

j ≤t+r}F'S(AB
j−)

(v) |Gt

F
.

Applying Fubini’s theorem again and summing over j, we conclude that

E

?

@A
N+

B (t+r)4

j=N+
B (t)+1

I%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD = E

*, t+r

t
F'S(u−)

(v) dN+
B (u) |Gt

+
.

However, we have that the compensator of N+
B (·) is the identity and therefore

E

?

@A
N+

B (t+r)4

j=N+
B (t)+1

I%
max

!S(AB
j

−)
i=1 V B

i,j≤v

&|Gt

B

CD = E

*, t+r

t
F'S(u−)

(v) du|Gt

+
.
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We conclude that

GM0 (t) =

N+
B (t)4

j=1

I%
max

!S(AB
j−)

i=1 V B
i,j≤v

& −
, t

0
F'S(u) (v) du

is a martingale and it proves the corresponding compensator with respect to G. A completely anal-

ogous development can be obtained for the point processes in (76)-(78), resulting in the martingales

GM1 (t) = N−
B

&, t

0

>B (r) dr

'
−

, t

0

>B (r) dr,

GM2 (t) =

N+
S (t)4

j=1

I%
max

!B(AS
j−)

i=1 V S
i,j>v

& −
, t

0

-
1− F 'B(r)

(v)
/
dr,

GM3 (t) =

N+
S (t)4

j=1

I%
max

!B(AS
j−)

i=1 V S
i,j≤v

& −
, t

0
F 'B(r)

(v) dr,

GM4 (t) = N−
S

&, t

0

>S (r) dr

'
−

, t

0

>S (r) dr,

GM5 (t) =

N+
B (t)4

j=1

I%
max

!S(AB
j−)

i=1 V B
i,j>v

& −
, t

0

-
1− F'S(r) (v)

/
dr.

This implies, by the reasoning given right after (74) and comparing GMi vs Mi for i ∈ {0, 1, . . . , 5},

that (68)-(69) and (70)-(71) are equivalent.

9.4 Proof of Theorem 3

We assume that the thresholds satisfy

vn,b
m(n)

→ vb,
vn,s
m(n)

→ vs for some vb, vs ≥ 0. (79)

Note that vb, vs could be infinity. Define the scaled quantity B̄n(t) = n−1Bn(t), S̄n(t) = n−1Sn(t).

According to the analysis in §9.3.1, it suffices to express B̄n(·), S̄n(·) in a Poisson-flow representation

of the scaled system:

B̄n (t) = B̄n (0) +
N+

B

-
λbn

. t
0 FSn(r) (vn,s) dr

/

n
−

N−
B

-
ηb

. t
0 Bn (r) dr

/

n

−
Ñ+

S

-
λsn

. t
0

#
1− FBn(r) (vn,b)

$
dr
/

n
, (80)
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S̄n (t) = S̄n (0) +
N+

S

-
λsn

. t
0 FBn(r) (vn,b) dr

/

n
−

N−
S

-
ηs

. t
0 Sn (r) dr

/

n

−
Ñ+

B

-
λbn

. t
0

#
1− FSn(r) (vn,s)

$
dr
/

n
, (81)

Define the putative fluid limit

B̄ (t) = B̄ (0) + λb

, t

0
e−κS̄(r)/v

1/α
s − ηb

, t

0
B̄ (r) dr − λs

, t

0

-
1− e−κB̄(r)/v

1/α
b

/
dr, (82)

S̄ (t) = S̄ (0) + λs

, t

0
e−κB̄(r)/v

1/α
b − ηs

, t

0
S̄ (r) dr − λb

, t

0

-
1− e−κS̄(r)/v

1/α
s

/
dr. (83)

We want to show that (B̄n, S̄n) converges weakly to (B̄, S̄), and then by studying the stationary

point of (B̄, S̄), get the distribution of limn→∞(B̄n(∞), S̄(∞)) for use in the asymptotic analysis of

the utility rate. We divide the proof into six steps. The first step is to show that (B̄n(·), S̄n(·)) →

(B̄(·), S̄(·)) uniformly on compact sets in probability. The second step is to show the tightness of

{B̄n(·), S̄n(·)} in the Skorokhod topology. The third step is the existence and uniqueness of the

solution of the putative fluid limit in (82)-(83). These first three steps follow directly from the

proof of Theorem 2 in §9.3, and are omitted. The fourth step is to show that there exists a unique

stationary point of the fluid limit and conclude that (B̄n(∞), S̄n(∞)) → (b, s) in probability, where

(b, s) is the stationary point of the fluid limit (82)-(83). The fifth step is to determine the limit of

the utility rate, and the last step is to compute the asymptotically optimal thresholds.

Step 4 Any stationary solution (b, s) of (82)-(83) must satisfy

λbe
−κs/v

1/α
s + λse

−κb/v
1/α
b = ηbb+ λs, (84)

λbe
−κs/v

1/α
s + λse

−κb/v
1/α
b = ηss+ λb. (85)

By (84)-(85), we know that

b =
ηss+ λb − λs

ηb
.

It suffices to show that (85) has a unique solution. Because the right side of (85) is a monotonically

increasing function and the left side of (85) is a monotonically decreasing function, as well as the
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facts that the left side exceeds the right side when s = 0 and the right side exceeds the left side

when s = λs/ηs, we conclude that the fluid limit has a unique stationary point.

We now show that (B̄n(∞), S̄n(∞)) → (b, s) in probability. First, by tightness, any subse-

quence of (B(·), S(·)) contains a subsubsequence that converges weakly. Because that subsubse-

quence converges to (B̄, S̄) in probability uniformly on compact sets, the stationary point converges

to (b, s) in distribution. Hence, the equilibrium of the whole sequence (B̄n(∞), S̄n(∞)) → (b, s) in

probability.

Step 5 We want to show that the limit of the utility rate is

lim
n→∞

Uu
n (vn,b, vn,s)

nm(n)
= λsb

αE[XI{bαX>vb}] + λbs
αE[XI{sαX>vs}], (86)

where the utility rate Un(vn,b, vn,s) is defined in (27) in the main text. To prove (86), it suffices to

show that there exists a subsubsequence of any subsequence of Un(vn,b, vn,s)/(nm(n)) converging

to that limit. Because (B̄n(∞), S̄n(∞)) → (b, s) in probability, for any subsequence there exists

a subsubsequence that converges almost surely. Pick such a subsubsequence, by slightly abusing

the notation, for further analysis, we denote such a subsubsequence as (B̄n(∞), S̄n(∞)), which also

implies that (Bn(∞), Sn(∞)) → (∞,∞) almost surely. By Assumption 3, we have M(Bn(∞))
m(Bn(∞)) ⇒ X.

Combined with the fact that m(Bn(∞))
m(nb) → 1 almost surely, we obtain

M(Bn(∞))

m(nb)
⇒ X. (87)

Because the Lebesgue measure of the discontinuity point of the indicator function I is 0, we can

apply the continuous mapping theorem and obtain

M(Bn(∞))

m(nb)
I{M(Bn(∞)≥vn,b} =

M(Bn(∞))

m(nb)
I!M(Bn(∞))

m(nb)
m(nb)
m(n)

≥
vn,b
m(n)

" ⇒ XI{bαX≥vb}. (88)

Because

E

*
M(Bn(∞))

m(nb)

+
=

E[m(Bn(∞)]

m(E[Bn(∞)])

m(E[Bn(∞)])

m(bn)
,
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by Lemma 1, it follows that E[m(Bn(∞)]
m(E[Bn(∞)]) → 1. Because B̄n(∞) is bounded above by the queueing

system without matching, which has expectation λb/ηb < ∞, we have E
2
B̄n(∞)

3
→ b by domi-

nated convergence, which implies that m(E[Bn(∞)])
m(bn) → 1. Thus, we have limn→∞E

E
M(Bn(∞))

m(nb)

F
= 1.

Because

0 ≤ M(Bn(∞))

m(nb)
I{M(Bn(∞)≥vn,b} ≤

M(Bn(∞))

m(nb)
,

by dominated convergence, we have

lim
n→∞

E

*
M(Bn(∞))

m(nb)
I{M(Bn(∞)≥vn,b}

+
= E[XI{bαX≥vb}].

Similarly, we can show

lim
n→∞

E

*
M(Sn(∞))

m(ns)
I{M(Sn(∞)≥vn,s}

+
= E[XI{sαX≥vs}].

Note that by Assumption 2, limn→∞
m(nb)
m(n) = bα, limn→∞

m(ns)
m(n) = sα. It follows that

lim
n→∞

E

*
M(Bn(∞))

m(n)
I{M(Bn(∞)≥vn,b}

+
= bαE[XI{bαX≥vb}],

which implies that asymptotic utility rate in (86).

Step 6 By steps 1 to 5, we have shown that the asymptotically optimal thresholds can be obtained

by solving the optimization problem (28)-(30) in Theorem 3. In this final step, we compute the

optimal thresholds by reducing (28)-(30) to a one-dimensional optimization problem over a compact

interval by making a change of variables, showing that vb = vs for any feasible pair (b, s), and solving

for the optimal (b, s).

The case of no matching, i.e., vb = vs = ∞, provides an upper bound on the system’s steady-

state population of ρb =
λb
ηb

and ρs =
λs
ηs
. Hence, b ∈ [0, ρb] and s ∈ [0, ρs]. Recall by Assumption 3

that X =
#
κ−1T

$−α
, where T is exponentially distributed with unit mean. Defining

G (x) =

, x

0
t−αe−tdt

and using the change of variables

x =
κs

v
1/α
s

and y =
κb

v
1/α
b

, (89)
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we use (63)-(64) to express problem (28)-(30) as

max
s,b∈(0,ρs)×(0,ρb),(x,y)∈R2

+

λbs
αG (x) + λsb

αG (y) (90)

subject to λbe
−x + λse

−y = bηb + λs = sηs + λb. (91)

Suppose for now that b and s are fixed (and feasible) and we are optimizing over (x, y) in (89).

Because G (·) in (90) is strictly concave and increasing, problem (90)-(91) is given by

max
(x,y)∈R2

+

λbs
αG (x) + λsb

αG (y) , (92)

subject to λbe
−x + λse

−y ≥ bηb + λs = sηs + λb, (93)

which is a convex optimization problem because the constraints in (93) form a convex set. The

optimality conditions for (92)-(93) are

λbs
αx−αe−x = βλbe

−x,

λsb
αy−αe−y = βλse

−y,

where β is a Lagrange multiplier, which yields

b

y
=

s

x
= β1/α.

Hence, the change of variables in (89) implies that

vb = vs. (94)

Now define the change of variable

τ =
κ

v
1/α
b

, (95)

so that x = τs and y = τb. For a given s ∈ (0, ρs), (91) implies that

b (s) =
sηs + λb − λs

ηb
. (96)

Substituting (96) into (91), we define τ (s) to be the unique solution to

λbe
−sτ + λse

−b(s)τ = sηs + λb (97)
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for any s ∈ (0, ρs) and b ∈ (0, ρs). Note that τ (s) is well defined because the left side of (97) is

decreasing in τ , given s and therefore b (s). Moreover, the left side of (97) is larger than the right

side when τ = 0 and the right side is larger than the left side if τ = ∞.

Then the optimization problem (90)-(91) takes the form

max
s∈[0,ρs]

λsb(s)
αG(b(s)τ(s)) + λbs

αG(sτ(s)). (98)

Let H(s) = λsb(s)
αG(b(s)τ(s)) + λbs

αG(sτ(s)) from (98). The remainder of this proof is devoted

to showing that H(s) is concave on s ∈ (0,λs/ηs), which implies that it has a unique maximizer.

To prove that H(s) is concave, it suffices to show that the second derivative H ′′(s) ≤ 0. The first

derivative of H(s) is

H ′(s) = λsαb
α−1b′G(bτ) + λbαs

α−1G(sτ) + τ−α[λse
−bτ (bτ ′ + τb′) + λbe

−sτ (sτ ′ + τ)]. (99)

By (95), equation (91) can be expressed as

ηss+ λb = λbe
−sτ + λse

−bτ . (100)

Taking the derivative of (100) with respect to s yields

ηs = −λbe
−sτ (sτ ′ + τ)− λse

−bτ (bτ ′ + τb′), (101)

and substituting (101) into (99) gives

H ′(s) = λsαb
α−1G(bτ)b′ + λbαs

α−1G(sτ)− ηsτ
−α. (102)

Taking the derivative of (102) gives the second derivative

H ′′(s) = λsα(α− 1)bα−2G(bτ)(b′)2 + λbα(α− 1)sα−2G(sτ) + λsαb
α−1b′G′(bτ)(b′τ + τ ′b)

+ λbαs
α−1G′(sτ)(τ + sτ ′) + αηsτ

−α−1τ ′,

= αλsb
α−2(b′)2[(α− 1)G(bτ) + (bτ)1−αe−bτ ] + αλbs

α−2[(α− 1)G(sτ) + (sτ)1−αe−sτ ]

+ ατ−ατ ′(λse
−bτ b′ + λbe

−sτ + ηsτ
−1), (103)

where the second equality is obtained by substituting the expression of G′(·).
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Solving (101) for τ ′ gives

τ ′ = −ηs + λbe
−sττ + λsb

′e−bττ

λbse−sτ + λsbe−bτ
< 0,

which implies that the third term of (103) is negative. If we can show that the first two terms of

(103) are negative, i.e.,

(α− 1)G(bτ) + (bτ)1−αe−bτ ≤ 0,

(α− 1)G(sτ) + (sτ)1−αe−sτ ≤ 0,

then we can conclude that H ′′(s) < 0, which means that there exists a unique maximizer of H. To

this end, define

J(t) ≜ (α− 1)G(t) + t1−αe−t, t ≥ 0.

Because

J ′(t) =(α− 1)G′(t) + (1− α)t−αe−t − t1−αe−t,

=− t1−αe−t ≤ 0,

then for t ≥ 0, J(t) ≤ J(0) = 0. Hence, we conclude that there exists a unique solution to the

optimization problem and prove the asymptotic optimality of the proposed utility-threshold policy.

Taken together, the asymptotically optimal thresholds in the nth system are

v∗n,b = v∗n,s =

&
κ

τ(s∗)

'α

m(n) (104)

by (79), (94) and (95), where s∗ is the solution to (98) and τ(s∗) is the unique solution to

λbe
−s∗τ + λs∗e

−b(s∗)τ = s∗ηs∗ + λb. (105)

By (64), (86), (89) and (104), the corresponding utility rate satisfies

Uu
n (v

∗
n,b, v

∗
n,s) ∼ nm(n)κα[λb[s

∗]αG(s∗τ(s∗)) + λs[b(s
∗)]αG(b(s∗)τ(s∗))] as n → ∞. (106)
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9.5 Proof of Theorem 4

Before proving Theorem 4, we introduce and prove the following lemma, which provides upper and

lower bounds on the limit of E[M(k)] as k → ∞.

Lemma 5 The limit of E[M(k)]
kα+1 exists as k → ∞. Moreover,

&
1− 3

2
e−1/2

'2

≤ lim
k→∞

E[M(k)]

kα+1
≤ cΓ(1− α).

Proof of Lemma 5

First, note that E[M(‖)]/kα is subadditive, which follows from the definition of M(‖) and

the fact that kα is increasing. Fekete’s Subadditive Lemma (Fekete 1923) implies that the limit of

E[M(‖)]/kα+1 exists as k → ∞.

Next, following Frenk et al. (1987), we construct two sequences of i.i.d random variables, Ui,j

and Wi,j for i, j = 1, . . . , k, with distribution F̃ (x) =
H

F (x). Recalling that our matching utilities

are denoted by Vi,j , we have that

Vi,j
d
= max{Ui,j ,Wi,j}, where

Ui,j
d
= F̃−1(Xi,j), where Xi,j ∼ Uniform[0, 1],

Wi,j
d
= F̃−1(Yi,j), where Yi,j ∼ Uniform[0, 1].

To obtain the lower bound, we consider a complete directed bipartite graph Gk with vertices

B = {b1, ..., bk}, S = {s1, ..., sk}. There are directed edges e(bi, sj) from vertex bi to sj and e(sj , bi)

from vertex sj to bi. Each directed edge has a weight, with weight Ui,j on e(bi, sj) and Wi,j on

e(sj , bi). Define U
(l)
i to be the lth largest weight among Ui,j , j = 1, ..., k, and W

(l)
j to be the lth

largest weight among Wi,j , i = 1, ..., k. Let Gk(d) be the graph by removing edge e(bi, sj) unless

Ui,j is one of the d largest weights at bi and removing edge e(sj , bi) unless Wi,j is one of the d

largest weights at sj . Define P (k, d) to be the probability that Gk(d) contains a perfect matching.

By Walkup (1980), we know that

1− P (k, 2) ≤ 1

5k
, and 1− P (k, d) ≤ 1

122

&
d

k

'(d+1)(d−2)

for d ≥ 3.
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Then

E[M(k)] = P (k, 2)E[M(k)|Gk(2) contains a perfect matching]

+(1− P (k, 2))E[M(k)|Gk(2) does not contain a perfect matching]. (107)

The first expectation on the right side of (107) is lower bounded by

E[M(k)|Gk(2) contains a perfect matching] ≥ kE[min{U (2),W (2)}],

= kE[min{F̃−1(X(2)), F̃−1(Y (2))}],

= kE[F̃−1(min{X(2), Y (2)})].

Notice that

E[F̃−1(min{X(2), Y (2)})]

= E[F̃−1(min{X(2), Y (2)})I!
min{X(2),Y (2)}≥

(
1− 1

k

"] + E[F̃−1(min{X(2), Y (2)})I!
min{X(2),Y (2)}<

(
1− 1

k

"],

≥ P

(
min{X(2), Y (2)} ≥

I
1− 1

k

)
F−1

&
1− 1

k

'
. (108)

The first term in (108) satisfies

P

(
min{X(2), Y (2)} ≥

I
1− 1

k

)
= P

(
X(2) ≥

I
1− 1

k
, Y (2) ≥

I
1− 1

k

)
,

= P

(
X(2) ≥

I
1− 1

k

)2

,

=

(
1−

&
1− 1

k

'k/2

− k

&
1− 1

k

'(k−1)/2
(
1−

I
1− 1

k

))2

,

→
&
1− 3

2
e−1/2

'2

as k → ∞. (109)

Equation (109) implies the lower bound

lim inf
k→∞

M(k)

kα+1
= lim inf

k→∞

M(k)

kF−1(1− 1
k )

,

≥
&
1− 3

2
e−1/2

'2

.
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An upper bound for E[M(k)] is given by

E[M(k)] ≤ kmax{U1, . . . , Uk},

= ck
Γ(k + 1)Γ(1− α)

Γ(k + 1− α)

by equation (3.7) in Malik (1966), where c is a parameter of the Pareto distribution. It follows that

lim sup
k→∞

E[M(k)]

kα+1
≤ lim

k→∞
c
Γ(k + 1)Γ(1− α)

kαΓ(k + 1− α)
.

The proof is completed by noting that

lim
k→∞

c
Γ(k + 1)Γ(1− α)

kαΓ(k + 1− α)
= cΓ(1− α),

which follows from equation (1) of Tricomi and Erdélyi (1951).

Proof of Theorem 4

As before, we let (Bn(t), Sn(t)) be the number of buyers and sellers in the nth system at time

t. To analyze the long-run average performance of the batch-and-match policy, it suffices to study

the queue length dynamics over a single batching cycle, which for ease of presentation we take to

be the time interval [0,∆), where by construction (i.e, because matches were made just prior to

time 0) min{Bn(0), Sn(0)} = 0. For t ∈ [0,∆), because there are no matches made in this time

interval, we have

Bn(t) = Bn(0) +N+
B (nλt)−N−

B (η

, t

0
Bn(r)dr),

Sn(t) = Sn(0) +N+
S (nλt)−N−

S (η

, t

0
Sn(r)dr),

with its fluid model

B̄(t) = B̄(0) + λt− η

, t

0
B̄(r)dr,

S̄(t) = S̄(0) + λt− η

, t

0
S̄(r)dr.

We know that (B̄n(·), S̄n(·)) converges to (B̄(·), S̄(·)) uniformly on compact sets in probability,

where

B̄(t) = B̄(0)e−ηt +
λ

η
(1− e−ηt), (110)

S̄(t) = S̄(0)e−ηt +
λ

η
(1− e−ηt). (111)
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By the continuous mapping theorem,

min(B̄n(t), S̄n(t)) → min(B̄(t), S̄(t)) in probability as n → ∞.

Because (Bn(t), Sn(t)) is upper bounded by the queue lengths with only arrivals and no abandon-

ments, the dominated convergence theorem implies that

lim
n→∞

E[min{B̄n(t), S̄n(t)}] = E[min{B̄(t), S̄(t)}].

Because min{Bn(0), Sn(0)} = 0, it follows from (110)-(111) that just prior to matching,

min{B̄(∆), S̄(∆)} =
λ

η
(1− e−η∆). (112)

By Lemma 5, there exists a constant C such that

lim
n→∞

E[M(k)]

kα+1
= C ∈

"&
1− 3

2
e−1/2

'2

, cΓ(1− α)

%
.

Hence, E[M(k)] is regularly varying with index α by Assumption 2, and Lemma 1 implies that the

utility rate U b
n(∆) of the batch-and-match policy with time window ∆ satisfies

lim
n→∞

U b
n(∆)

nα+1
=

C
E
λ
η (1− e−η∆)

Fα+1

∆
. (113)

Because the right side of (113) is concave, the first-order conditions corresponding to (113) imply

that the asymptotically optimal time window ∆∗ is the unique positive solution to (32) in the

main text, which is independent of the arrival rate λ and decreasing in the abandonment rate η.

Combining Lemma 5, equation (32) in the main text, and (113) gives the upper bound in (31) in

the main text, thereby concluding the proof of Theorem 4.

The Unbalanced Case

For brevity’s sake, we present the corresponding results for the unbalanced case and omit

the details. The arrival rates are (λb,λs), the abandonment rates are (ηb, ηs) and ρb = λb/ηb,

ρs = λs/ηs. The generalization of (112) is

min{B̄(t), S̄(t)} = min{ρb(1− e−ηbt), ρs(1− e−ηst)},
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and the utility rate satisfies

lim
n→∞

U b
n(∆)

nα+1
=

C[min{ρb(1− e−ηbt), ρs(1− e−ηst)}]α+1

∆
. (114)

The asymptotically optimal time window ∆∗ solves

max
∆,ξ

ξα+1

∆

s.t. ξ ≤ λb

ηb
(1− e−ηb∆),

ξ ≤ λs

ηs
(1− e−ηs∆).

This optimization problem has a solution because it has a concave objective function and a convex

feasible set.

10 Examples

In §10.1-10.3, we consider one canonical matching utility distribution from each of the three domains

of attraction (Weibull, Gumbel and Frechet), represented, respectively, by U(a, b), exp(ν), and

Pareto(c,β). In each of these examples, we compute the utility rate of the upper bound in Lemma 2,

the utility rate under the greedy policy from (24) in the main text, and the asymptotically optimal

(or heuristic, in some cases) thresholds and corresponding utility rates for the population threshold

policy and the utility threshold policy from Theorems 1 and 2, respectively. We continue to add

the superscripts +, g, p and u to U to denote the utility rate of the upper bound, the greedy policy,

the population threshold policy and the utility threshold policy, respectively. We briefly consider

matching utilities that come from a correlated Pareto distribution in §10.4.

10.1 Matching Utilities are Exponential

Let the matching utilities be exponential with parameter ν and CDF F (v) = 1 − e−νv for v ≥ 0,

which falls under the α = 0 case in Theorem 1. The exponential is in the domain of attraction of

Type I, and so (see (143)-(144) in §11) µ = γ = 0.5772 . . ., which is Euler’s constant, an = 1
ν and

bn = lnn
ν , and hence m(n) ∼ (γ + lnn)/ν.
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The utility rate of the upper bound is

U+
n ∼ λn

ν

(
γ + ln

(
nλ

η

))
by Lemma 2, (115)

∼ λ

ν
n lnn, (116)

and the utility rate of the greedy policy is

Ug
n ∼ λn

ν

(
γ + ln

(
λ

η

I
2n

π

))
by (24) in the main text, (117)

∼ λ

2ν
n lnn. (118)

As noted below Theorem 1, a range of population thresholds are asymptotically optimal in

the α = 0 case. For concreteness, we consider z∗n = n
lnn , which has utility rate

Up
n

(
n

lnn

)
∼ λn

ν

(
γ + ln

(
n

lnn

))
by (5) in the main text, (119)

∼ λ

ν
n lnn. (120)

By (116), (118) and (120), the population threshold policy with threshold n
lnn is asymptotically

optimal and doubles the utility rate of the greedy policy in the limit.

Recall that Theorem 2 does not apply to the α = 0 case. Nonetheless, we apply the ideas in

Theorems 1 and 2 to derive a heuristic threshold level for the utility threshold policy. By considering

the steady-state version of equation (68) and differentiating, we obtain

ηBn(∞)

λn
= P (M(Sn(∞)) ≤ vn)− (1− P (M(Bn(∞)) ≤ vn)) ,

which by symmetry yields

ηBn(∞)

λn
= 2P (M(Bn(∞)) ≤ vn)− 1. (121)

Now we heuristically assume that the utility threshold vn is such that it achieves a population level

Bn(∞) that equals the optimal population threshold z∗n, which for concreteness we again take to

be n
lnn . Substituting

n
lnn for Bn(∞) in (121) and noting that P (M(n) ≤ vn) = P (νM(n)− lnn ≤

νvn − lnn) ∼ exp(− exp(−νvn + lnn)) by (139), we get

η

λ lnn
= 2 exp

E
− exp

-
−νvn + ln

- n

lnn

//F
− 1. (122)
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Solving equation (122) gives the proposed threshold level,

v∗n =
lnn− ln lnn− ln ln

-
2λ lnn
λ lnn+η

/

ν
. (123)

This heuristic approach does not generate a corresponding utility rate.

10.2 Matching Utilities are Pareto With Finite Mean

Let the matching utilities have CDF F (v) = 1 − (cv)−β , for β > 1, c > 0 and cv ≥ 1, so that the

mean matching utility is finite and α = 1/β in Theorem 1. The Pareto distribution is in the domain

of attraction of the Frechet distribution, and hence (see (143)-(144) in §11) bn = 0, an = (cn)1/β

and µ = Γ
-
1− 1

β

/
, where Γ(n) is the gamma function. It follows that

m(n) ∼ (cn)1/βΓ
-
1− 1

β

/
.

By Lemma 2 and (24) in the main text,

U+
n ∼ λ

-cλ
η

/1/β
Γ
-
1− 1

β

/
n1+1/β , (124)

and

Ug
n ∼ λ

-cλ
η

I
2

π

/1/β
Γ
-
1− 1

β

/
n1+1/(2β). (125)

In contrast to (116) and (118) in the exponential case and to (134) and (136) in the uniform case,

the upper bound and the greedy performance in (124)-(125) have different growth rates in n.

Because α = 1/β, part ii) of Theorem 1 implies that

z∗n =
λ

η(1 + β)
n. (126)

That is, the optimal threshold equals the mean size of either side of the market in the absence of

matching (λn/η) times the factor 1
1+β , which is less than 1/2. Substituting (126) into (6) in the

main text gives the

Up
n(z

∗
n) ∼ λ

- cλ

η(1 + β)

/1/β
&

β

1 + β

'
Γ
-
1− 1

β

/
n1+1/β , (127)
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which has the same exponent of n as the upper bound. Comparing the utility rate under the

optimal population threshold policy to the upper bound, we get

U+
n

Up
n(z∗n)

=
1

-
1

1+β

/1/β -
β

1+β

/ , (128)

which converges to 4 as β → 1, and converges to 1 as β → ∞.

Comparing the utility rate of the optimal population threshold policy to the utility rate of

the greedy policy yields

Up
n(z∗n)

Ug
n

=

& √
π√

2(1 + β)

'1/β &
β

1 + β

'
n1/(2β), (129)

which converges to
H

πn
32 ≈ 0.3133

√
n as β → 1, and converges to 1 as β → ∞. For all finite values

of β, the difference in performance between the two policies becomes unbounded as n → ∞.

The optimal utility threshold needs to be computed numerically using the results in Theo-

rem 2. To streamline the presentation, we consider the special case considered in the simulation

experiments in §5, where λ = η = 1, c = 1 and β = 2, and hence α = 0.5, κ = 1/π andm(n) =
√
πn.

Using the fact that the incomplete gamma function γ(0.5, x) =
√
πerf(

√
x), by Theorem 2 we need

to find the solution z∗ ∈ (0,λ/η) satisfying

zI
π ln

-
2

z+1

/ = erf

(I
ln
- 2

z + 1

/)
. (130)

Given the solution z∗ to (130), Theorem 2 and its proof imply that

v∗n =

J
nz∗

ln
-

2
z∗+1

/ (131)

and

Uu
n (v

∗
n) ∼

2(nz∗)
3/2

I
ln

-
2

z∗+1

/ . (132)

10.3 Matching Utilities are Uniform

When the matching utilities are distributed as U(a, b) with F (v) = v−a
b−a for v ∈ [a, b], which is in

the domain of attraction of the Weibull law, we have (see (143)-(144) in §11) an = b−a
n , bn = b,
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µ = −Γ(2) = −1, m(n) ∼ b − b−a
n , and α = 0 in Theorem 1. By Lemma 2 and (24) in the main

text,

U+
n ∼ nλ

-
b− b− a

λ
ηn

/
, (133)

∼ λbn, (134)

and

Ug
n ∼ nλ

-
b− b− a

λ
η

K
2n
π

/
, (135)

∼ λbn. (136)

By (134) and (136), the greedy policy is asymptotically optimal, and so there is no need to consider

a positive threshold level for the population threshold policy.

To heuristically analyze the utility threshold policy, we proceed as in §10.1, where equa-

tion (121) now becomes

ηBn(∞)

λn
= 2

&
vn − a

b− a

'Bn(∞)

− 1,

which can be rearranged as

vn = a+ (b− a)

&
ηBn(∞)

2λn
+

1

2

'1/Bn(∞)

.

Setting Bn(∞) = λ
η

K
2n
π from (23) in the main text, which is the expected number of available

mates for an arriving agent under the greedy policy, leads to

v∗n = a+ (b− a)

&
1√
2nπ

+
1

2

' η
λ

√
π
2n

. (137)

10.4 Matching Utilities are Correlated

One of the advantages of our analysis, which essentially decouples the extremal behavior of the

utilities and the dynamics of the agents in the fluid scale, is that we can enrich our model with

complex dependencies in the utilities by directly importing results from extreme value theory for

non-i.i.d. sequences of random variables. Assumptions 1, 2 and 3 can be shown to hold in substantial

generality, well beyond the setting of i.i.d. utilities. The study and calibration of extremes under
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non-i.i.d. sequences is a well-developed topic in extreme value theory; e.g., see Leadbetter et al.

(1983) and Smith and Weissman (1994).

Our decoupling approach provides a great degree of flexibility for modelers – informed by

specific types of applications – to incorporate correlated utilities. We consider two examples here.

The first example involves utilities that can be decomposed by adding a common factor (or factors)

and an idiosyncratic factor, thereby inducing a correlation effect. Suppose that when a seller

(buyer) arrives and finds k buyers (sellers), the corresponding utilities V1, V2, . . . , Vk are given by

Vi = ρU0 +
H

1− ρ2Ui for i = 1, 2, . . . , k, (138)

where ρ ∈ [0, 1), and U0, U1, . . . , Uk are i.i.d. with a Pareto(
√
3
2 , 3) distribution; i.e., for each i we

have P (Ui ≤ u) = 1− ( 2√
3u
)3 for u ≥ 2√

3
, and 0 otherwise. For example, the model in (138) allows

the common portion (ρU0) of the utility to quantify some characteristics of the seller, and the

variable portion (
H

1− ρ2Ui) to vary across the k buyers based on their individual characteristics.

The variance of each Vi is 1, independent of ρ. However, for ρ > 0, Cov(Vi, Vj) = ρ2 for each i ∕= j,

and the utilities have correlation ρ2.

Before computing the optimal thresholds and the corresponding utility rates for the popula-

tion threshold policy and the utility threshold policy, we show that Assumptions 2-3 hold. We have

m(k) = ρE[U0] +
H

1− ρ2E[maxki=1 Ui] ∼
H

1− ρ2Γ(1− 1
β )k

1/β , and M(k)
m(k) =

ρU0+
√

1−ρ2 maxki=1 Ui

m(k) ∼
maxki=1 Ui

E[maxki=1 Ui]
w.p.1, which implies that Assumptions 2 and 3 are satisfied with α = 1/3.

By Theorem 1, the asymptotically optimal population threshold is z∗n = λα
η(1+α)n, independent

of ρ, and the asymptotic utility rate is proportional to
H

1− ρ2. By Theorem 2, the asymptotically

optimal utility threshold is v∗n =
H

1− ρ2Γ(1 − 1
β )v∗n

1/β where v∗ is as given in the theorem

statement, and the corresponding utility rate is increasing in
H

1− ρ2.

Hence, in both cases, the utility rate decreases as the correlation ρ2 increases, as does the

optimal utility threshold. This is to be expected because the increased utility from being patient

is reduced in the presence of positive correlation. Less obvious is that the optimal population

threshold is independent of ρ2. The optimal population threshold is independent of ρ2 because it

trades off the higher utility from additional thickness (i.e., increased zn), which depends on the
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variation in (U1, . . . , Uk) in (138) but not on the common term U0 that dictates the correlation,

and the higher abandonment rate, which is independent of ρ2.

Our second example involves cases in which the population size itself impacts the correlation

among utilities (e.g., crowding network effects). Suppose the matching utilities for an arriving

agent that observes k potential matches are

Vi = 2−1/β max(ckW,Ui) for i = 1, 2, . . . , k,

where U1, . . . , Uk are i.i.d. with a Pareto(1,β) distribution with β > 1, W is independent of Ui and

is a Frechet(β) distributed random variable that is drawn independently for each arriving agent,

and ck = k1/βΓ(1 − 1
β ) for each k. Assumptions 2 and 3 are satisfied with α = 1/β, and thus our

results apply.

The random variable W could arise as a result of a separate mechanism in which crowding

is incorporated. For instance, if W itself was the result of another selection process that filtered

customer arrivals (thus the assumption that W is Frechet). However, even when W has a distribu-

tion that is different than Frechet(β), while Assumption 3 may not hold as is, our proof techniques

may be leveraged to compute optimal thresholds. We omit the details for the sake of brevity.

11 Extreme Value Theory and Regularly Varying Functions

In this section, we collect some useful facts about extreme value theory and show that Assumption 2

is satisfied by distributions that are subject to the application of extreme value theory. Throughout

this section we assume that the Vis are i.i.d. random variables.

The central result in extreme value theory is that, for certain distributions F (v), the CDF of a

properly normalized version of M (n) converges to a limiting CDF that is known as the generalized

Pareto distribution. More precisely,

P

&
M (n)− bn

an
≤ x

'
→ Ξ(ax+ b; ξ) as n → ∞, (139)

where

Ξ(x; ξ) := exp
-
− (1 + ξx)−1/ξ

/
, 1 + ξx > 0
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and ξ ∈ R. The case ξ = 0 is interpreted as G(x; 0) = e−e−x
.

There are three domains of attraction: ξ < 0 (Weibull), ξ = 0 (the Gumbel), and ξ > 0

(the Frechet). Distributions with bounded support (e.g., uniform, beta) typically belong to the

Weibull domain of attraction. Distributions with finite moments of every order (often, but not

always, with unbounded support) belong to the domain of attraction of the Gumbel distribution

(e.g., exponential, gamma, normal, lognormal). Distributions with power-law-like decaying tails

belong to the domain of attraction of the Frechet distribution (e.g., Pareto, Cauchy). The CDFs

corresponding to the Weibull, Gumbel and Frechet domains of attraction are readily available by

evaluating the corresponding values of ξ in G(x; ξ).

Define F̄ (x) = 1 − F (x) and let w(F ) = sup{x : F (x) < 1} be the upper endpoint of the

support of F . If convergence to a generalized Pareto distribution with parameter ξ holds (i.e. if

extreme value theory applies), then the corresponding constants can be computed as follows:

Weibull(ξ < 0) : an = w(F )− F̄−1(n−1), bn = w(F ), a = −1/ξ, and b = 1/ξ, (140)

Gumbel(ξ = 0) : an =
1

F̄ (bn)

, w(F )

bn

F̄ (t) dt, bn = F̄−1(n−1), a = 0, and b = 0, (141)

Frechet(ξ > 0) : an = F̄−1(n−1), bn = 0, a = 1/ξ, and b = −1/ξ, (142)

where F̄−1(·) is the inverse of F̄ (·).

We now switch our attention to E[M (n)]. Theorem 2.1 in Pickands (1968) shows that the

first moment converges as long as E[V 1+δ] < ∞ for some δ > 0, which is satisfied for all the

concrete examples explored in this paper. This result implies that

E[M (n)] ∼ bn + anµ , (143)

where

µ =

, ∞

−∞
x dΞ(ax+ b; ξ) for ξ ∈ (−∞,∞) (144)

is the mean of the distribution Ξ(·; ξ) computed according to the limiting value of the domain of

attraction. The mean in (144) is µ = γ = 0.5772 . . . if ξ = 0, which is Euler’s constant; µ = Γ(1−ξ),
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where Γ(a) is the gamma function evaluated at a > 0, if ξ ∈ (0, 1), which holds in the Frechet case

if E(V 1+δ) < ∞; and µ = −Γ(1− ξ) if ξ < 0.

We conclude this section by stating the relationship between extreme value theory and slowly

varying functions, thereby showing that the extreme value distributions satisfy Assumption 2.

Fact 1. If F belongs to the domain of attraction of the Gumbel distribution (i.e. ξ = 0)

then bn is slowly varying at infinity.

Fact 1 follows from Proposition 0.10 of Resnick (1987), combined with the first exercise on

p. 35 of Resnick (1987).

Fact 2. (Resnick 1987, p. 52) If F belongs to the domain of the Gumbel law then an = o (bn)

as n → ∞.

Fact 3. (Resnick 1987, p. 54) F belongs to the domain of attraction of the Frechet distribu-

tion (i.e. ξ > 0) if and only if an = 0 and bn = F̄−1 (1/n) as n → ∞ and F (·) is regularly varying

with index −ξ.

Fact 4. (Resnick 1987, p. 59) F belongs to the domain of attraction of a Weibull distribution

if and only if w (F ) < ∞ and F̄
#
w (F )− x−1

$
is regularly varying with index ξ.

Facts 1 and 2 imply that m (·) is slowly varying (i.e. regularly varying with index 0) for

distributions in the Gumbel domain of attraction. Fact 3 implies that m (·) is regularly varying

with index ξ ∈ (0, 1) for distributions in the domain of attraction of the Frechet law. Finally, Fact 4

implies that m (·) is slowly varying for distributions in the domain of attraction of the Weibull law.
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Figure 1: In the unbalanced numerical example in §6, the simulated utility rate vs. the utility

threshold vb with vs = 52.7, and vs. vs with vb = 52.7.

46


	opre.2021.2186 (1)
	s1
	s1A
	s1B
	TF1
	s1C
	s1D
	s2
	s2A
	s2B
	s2C
	s2D
	s3
	s3A
	s3B
	s4
	s5
	s5A
	s5B
	s5C
	TF2
	s6
	s7
	s8

	matching-markets-appendix_FINAL

