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These notes supplement Joslin, Singleton, and Zhu (2010b, JSZ).

1 Example: Arbitrage-Free Nelson-Siegel Model

JSZ shows that restrictions that only affect Q-parameters are irrelevant for forecasting the

portfolio of yields P. An immediate implication of this observation is that forecasts of P
using an arbitrage-free Nelson-Siegel (AFNS) model are equivalent to forecasts based on an

unconstrained VAR(1) representation of P. To see this, we show that the AFNS model

of Christensen, Diebold, and Rudebusch (2010) is an invariant transformation of a special

case of the JSZ normalization (and indeed of the DS normalization) with the additional

constraint that λQ = (0, λ, λ) and rQ
∞ = 0.1 The AFNS(3) model with latent state vector

Xt = (X1
t , X

2
t , X

3
t )′ has a feedback matrix KQ

1X of the form

KQ
1X =

0 0 0

0 −λ λ

0 0 −λ

 , (1)

and the short rate depends only on the first two latent pricing factors: rt = X1
t +X2

t . This

model is obtained by starting with the Jordan form underlying the JSZ normalization chosen

∗Joslin is at Sloan School of Management, MIT, sjoslin@mit.edu. Singleton is at Graduate School of
Business, Stanford University and NBER, singleton ken@gsb.stanford.edu. Zhu is at Graduate School of
Business, Stanford University, haoxiang.zhu@stanford.edu.

1Christensen, Diebold, and Rudebusch (2010) also impose zero drift of the non-stationary factor under Q.
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to be the three-factor case with rt = rQ
∞ + ι′Yt and KQ

1Y having two equal eigenvalues:

∆Yt =

−α 0 0

0 −λ 1

0 0 −λ

 Yt−1 + ΣY ε
Q
t . (2)

Applying the invariant transform

B =

1 0 0

0 1 1

0 0 1/λ


to Y gives Xt = BYt, ΣX = BΣY , rt = rQ

∞ + (1, 1, 0)Xt, and

∆Xt =

−α 0 0

0 −λ λ

0 0 −λ

Xt−1 + ΣXε
Q
t . (3)

Therefore, the AFNS model is the constrained special case of the JSZ normalization with

λQ = (0, λ, λ) and rQ
∞ = 0. Proposition 3 of JSZ implies that these restrictions do not affect

the ML estimates of KP
0P and KP

1P and, hence, they cannot improve the forecasts of P relative

to an unconstrained VAR(1). It follows that the forecast gains that Christensen, Diebold,

and Rudebusch (2010) attribute to the structure of their AFNS pricing model must in fact

have been a consequence of restrictions that they imposed directly on the P-distribution of

bond yields – the no-arbitrage restrictions implicit in the AFNS model played no role in their

forecasts of the first three PCs of bond yields.

2 Additional Details for Proof of Proposition 1

The only remaining step in the proof of Proposition 1 of JSZ is the following. For any 2n×2n

Jordan block

Ji =


R I2 · · · 0

0 R · · · 0
...

...
. . . I2

0 · · · 0 R
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with

R =

(
β −µ
µ β

)
,

and any 2n× 1 vector ρ, there exists an invertible matrix B such that

BJiB
−1 = Ji and

(
B−1

)′
ρ = ~1.

We prove this claim in a series of lemmas.

Lemma 1. For A ∈ R2n×2n with a strictly complex eigenvalue λ of algebraic multiplicty n

and geometric multiplicty 1, there exists U ∈ R2n×2n so that U−1AU = J where

J =



B I2 0 · · · 0

0 B I2 · · · 0

0 0 B
. . . 0

...
...

...
. . . I2

0 0 0 · · · B


where B1,1 = B2,2 = real(λ) and B2,1 = −B1,2 = |imag(λ)|.

Proof of Lemma 1: There exist eigenvectors x1, x2, . . . , x2n ∈ C2n such that, for U0 =

[x1, . . . , x2n],

U−1
0 AU0 =

(
J0 0

0 J̄0

)
, where J0 =



λ 1 0 · · · 0

0 λ 1 · · · 0

0 0 λ
. . . 0

...
...

...
. . . 1

0 0 0 · · · λ


and J̄0 denotes the complex conjugate of J0. It is easy to verify that for xi = x̄i+n (i =

1, 2, . . . , n) and

U = [real(x1), imag(x1), . . . , real(xn), imag(xn)],

the matrix U−1AU has the desired form.
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Next, consider the sets of matrices

MO =

{[
α β

−β α

]
: α, β ∈ R

}
, M+

O =

{[
α β

−β α

]
: α, β ∈ R, β 6= 0

}
, (4)

MD =

{[
α β

β −α

]
: α, β ∈ R

}
. (5)

Let [A,B] = AB −BA denote the lie bracket. Then we have the following lemmas:

Lemma 2. For any A ∈M+
O , {B : B−1AB = A} = {B : [A,B] = 0} = MO.

Proof: The proof is immediate from(
c d

e f

)(
α β

−β α

)
−

(
α β

−β α

)(
c d

e f

)
= β

(
e+ d f − c
f − c −(e+ d)

)
. (6)

Lemma 3. For any A ∈MO, B ∈ R2×2, AB −BA ∈MD.

Proof: This is also immediate from (6).

Lemma 4. . If A ∈MC , C and E are in R2×2, AC +E = CA, and AE = EA, then E = 0

and C ∈MO.

Proof: Follows immediately from previous lemmas since E ∈MD ∩MO.

Lemma 5. If A ∈M+
O and 



A I2 0 · · · 0

0 A I2 · · · 0

0 0 A
. . . 0

...
...

...
. . . I2

0 0 0 · · · A


, B


= 0,

then B has the form

B =



E1 E2 E3 · · · En

0 E1 E2 · · · En−1

0 0 E1
. . .

...
...

...
. . . E2

0 0 0 · · · E1


,

where each Ei ∈MO.
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Proof: We prove this lemma for the case n = 3. The general result can be proven by

induction. The result is obtained by repeated application of Lemma 4.A I

A I

A


C D E

F G H

J K L

−
C D E

F G H

J K L


A I

A I

A

 = (7)

[A,C] + F [A,D] +G− C [A,E] +H −D
[A,F ]− J [A,G] +K − F [A,H] + L−G

[A, J ] [A,K]− J [L,A]−K

 (8)

(3, 1)⇒ J ∈MO

J ∈MO & (2, 1)⇒ J = 0 and [A,F ] = 0 and F ∈MO

F ∈MO & (1, 1)⇒ F = 0 and C ∈MO

J = 0 & (3, 2)⇒ K ∈MO

K ∈MO & F = 0 & (2, 2)⇒ K = 0 and [A,G] = 0 and G ∈MO

G− C ∈MO & (1, 2)⇒ G− C = 0 and D ∈M0

K = 0 & (3, 3)⇒ L ∈MO

L ∈MO & G ∈MO & (2, 3)⇒ L−G = 0 and [A,H] = 0 and H ∈MO

H −D ∈MO & (1, 3)⇒ H −D = 0 and E ∈M0

This establishes the result for n = 3.

Lemma 6. For any ρ ∈ R2n with ρ2
1+ρ2

2 6= 0 and JC , there exists a B such that BJCB
−1 = JC

and (B−1)>ρ = ~1. Conversely, if for any JC , B, BJCB
−1 = JC and (B−1)>~1 = ~1, it must be

that B = I2n.

Note that for Ei ∈M0, then





E1 E2 E3 · · · En

0 E1 E2 · · · En−1

0 0 E1
. . .

...
...

...
. . . E2

0 0 0 · · · E1



>

−1

=


F1 0 0 · · · 0

F2 F1 0 · · · 0

F3 F2 F1 · · · 0
...

...
...

. . .

Fn Fn−1 Fn−2 · · · F1


for some Fi ∈MO.
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Proof: Let Fi =

(
αi βi

−βi αi

)
. Notice that

Fi

(
ρ1,1

ρ1,2

)
=

(
ρ1,1 ρ1,2

−ρ1,2 ρ1,1

)(
αi

βi

)

and

∣∣∣∣∣
(
ρ1,1 ρ1,2

−ρ1,2 ρ1,1

)∣∣∣∣∣ = ρ2
1,1 + ρ2

1,2 6= 0, since otherwise the model can be reduced to an

(N − 2)-dimensional model.

It must be that (
1

1

)
=

i∑
j=1

Fj

(
ρ1,2i−2j+1

ρ1,2i−2j+2

)

= Fi

(
ρ1,1

ρ1,2

)
+

i−1∑
j=1

Fj

(
ρ1,2i−2j+1

ρ1,2i−2j+2

)
,(

ρ1,1 ρ1,2

−ρ1,2 ρ1,1

)(
αi

βi

)
=

(
1

1

)
−

i−1∑
j=1

Fj

(
ρ1,2i−2j+1

ρ1,2i−2j+2

)
(
αi

βi

)
=

(
ρ1,1 ρ1,2

−ρ1,2 ρ1,1

)−1((
1

1

)
−

i−1∑
j=1

Fj

(
ρ1,2i−2j+1

ρ1,2i−2j+2

))
.

Inductively we can construct (αi, βi), since by assumption the required matrix inverse exists.

The uniqueness follows as well.

3 Fully Flexible GDTSM

In JSZ, we assume that (i) the eigenvalues under Q are non-zero and (ii) bond yields follow a

Markov process. We elaborate on each of these assumptions in turn.

3.1 A Q Unit-Root Process for the Pricing Factors

JSZ assumed that the Q representation of the pricing factors Xt does not have a unit root

(the eigenvalues of KQ
1P are all non-zero). The presence of a unit Q root (or indeed a root

less than zero) is not precluded by the economics of no arbitrage and, in practice, at least

one of the estimated roots of KQ
1P is often quite close to zero. When there is a zero Q root in

Pt the JSZ canonical form for GDTSMs is no longer applicable. The reason is that rQ
∞ is
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not econometrically identified. Fortunately, a minor renormalization of our canonical form is

valid for positive, zero, or negative Q roots.

To see the problem, consider the steps that JSZ used in rotating their latent state Xt to

Pt: they (i) diagonalize KQ
1P with ascending eigenvalues, (ii) normalize the scale of Pt by

setting ρ1P = ~1, and (iii) remove a level indeterminacy by de-meaning the factors under Q
(KQ

0P = 0) (see their Proposition 1). A zero eigenvalue of KQ
1P precludes step (iii), which

leaves the level of one of the risk factors, say P1t, undetermined.

That this indeterminacy is easily addressed is seen by comparing the following two

equivalent normalizations of (KQ
0P , ρ0) in the Q-stationary case:

KQ
0P =


0

0
...

0

 and ρ0 =
kQ
∞

λQ
1

or KQ
0 =


kQ
∞

0
...

0

 and ρ0 = 0. (9)

The normalization on the left is the one adapted from JSZ; the one of the right is obtained

by leaving the constant in the drift of P1t factor as a free parameter and normalizing ρ0P to

zero. When λQ
1 = 0 (P1t is Q-nonstationary), the first normalization is not admissible. In

contrast, the second does not depend on the eigenvalues of KQ
1P and, as such, it assists in

achieving identification regardless of the value of λQ
1 .2

There is the additional practical question of the stability of the numerical optimization

of the likelihood function under the first normalization when λQ
1 is not zero, but is close

to zero. It seems likely that in this case there will be numerical difficulty with estimating

rQ
∞ and, indeed, in finding the global optimum of the likelihood function. This, we suspect,

underlies the numerical instability with the Joslin, Singleton, and Zhu (2010b) normalization

scheme for GDTSMs documented by Hamilton and Wu (2010). A solution to this problem, if

it is encountered, is to adopt our modified canonical form with kQ
∞ as a free parameter and

ρ0X = 0. This leads to numerically stable searches even if the value λQ
1 = 0 is encountered.

3.2 Non-Markovian Pricing Factors

The non-Markovian case does introduce new issues. For example, we could suppose that

the yield curve is 3-dimensional (i.e., there are 3 factors that are relevant for pricing so

that NQ = 3), but that there are additional factors that are relevant for predicting future

2One implication of this observation is that setting both kQ
∞ and rQ

∞ to zero in the presence of a Q-
nonstationary risk factor, as was done by Christensen et al.(2009, 2010)) in defining their arbitrage-free
Nelson-Siegel model, amounts to imposing an over-identifying restriction on the drift of X1t.
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bond prices (i.e. N > 3). Joslin, Priebsch, and Singleton (2010a) make such an assumption.

However, they also assume that, although the yield curve alone does not follow a Markov

process, when the yield curve is augmented with macro variables the joint process is Markov.

More generally, one could augment the GDTSM given by (1–3) in JSZ with macro variables

Mt through the expression Mt = δ0 + δ′1Xt. For a non-degenerate model where the maximal

rank of [BW , δ1] is less than the dimension of Xt, there will be some factor which predicts

future yields and/or macro variables but that is not determined by the current yo
t and Mt.

For example, we may have NQ = 3 while N = 4 so that there exists a latent factor which

predicts future bond returns but is not determined by current bond yields. In the absence of

identification through macro variables, such a factor must be filtered. An analog of our main

normalization continues to apply, though we no longer have informed priors over all of the

parameters. We plan to analyze such models in more detail in future research.
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