What do Financial markets say about the exchange rate?* Not all that much...

Mikhail Chernov \& Valentin Haddad \& Oleg Ithskhoki discussion by H. Lustig

Summary of CHI (2023)

- Very little we can learn about exchange rates from (largely uninformative) financial market moments.
- Especially if you rule out completely implausible asset market structures.
- Finance is a sideshow when you're trying to understand exchange rates.
- Commonly held view in macro.

What do Financial markets say about the exchange rate?*
 Quite a lot!

Mikhail Chernov \& Valentin Haddad \& Oleg Ithskhoki discussion by H. Lustig

My Take on This Paper

- Lots we can learn (and have learned) about exchange rates from (highly informative) financial market moments.
- Especially if you have to rule out completely plausible asset market structures to match moments.
- Agree with most of the equations.
- Don't quite agree with the words.
- Provocative early-stage paper; still converging.

Complete Markets: Three Major FX Puzzles

- Take your favorite (rep. agent) SDF, e.g. $m_{t+1}=\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}$.
- With Complete Markets, Exchange rates are shock absorbers:
$\Delta s_{t+1}=m_{t+1}-m_{t+1}^{*}$.

1. Volatility puzzle: Brandt, Cochrane, and Santa-Clara (2006)

$$
\begin{aligned}
\operatorname{var}_{t}\left(\Delta s_{t+1}\right) & =\operatorname{var}_{t}\left(m_{t+1}^{*}\right)+\operatorname{var}\left(m_{t+1}\right) \\
& -2 \rho_{t}\left(m_{t+1}, m_{t+1}^{*}\right) s t d_{t}\left(m_{t+1}\right) s t d_{t}\left(m_{t+1}^{*}\right)
\end{aligned}
$$

2. Counter-cyclicality/Backus-Smith puzzle: Kollmann (1991), Backus and Smith (1993)

$$
\operatorname{cov}_{t}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)=\operatorname{var}_{t}\left(\Delta s_{t+1}\right)>0
$$

3. Risk premium puzzle (Forward premium / UIP puzzle): Tryon (1979), Hansen and Hodrick (1980), Fama (1984), Backus, Foresi and Telmer (2001)

Shutting Down Markets: Only 4 Bond Euler Equations

- 4 Equations considered by Lustig and Verdelhan (2019)
- Domestic investors (with access to bond markets) face Euler equations for domestic and foreign currency bonds:

$$
\begin{aligned}
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}+r_{t}\right)\right] \\
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}-\Delta s_{t+1}+r_{t}^{*}\right)\right]
\end{aligned}
$$

- Foreign investors (with access to bond markets) face Euler equations for foreign and domestic currency bonds:

$$
\begin{aligned}
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+r_{t}^{*}\right)\right] \\
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+\Delta s_{t+1}+r_{t}\right)\right] .
\end{aligned}
$$

- Does not specify the other securities traded across borders/currencies (Incomplete Markets).

Partially Integrated Markets

- CHI (2023) label this special case with 4 bond Euler equations Partially Integrated Markets:

$$
\begin{aligned}
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}+r_{t}\right)\right], \\
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}-\Delta s_{t+1}+r_{t}^{*}\right)\right], \\
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+r_{t}^{*}\right)\right], \\
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+\Delta s_{t+1}+r_{t}\right)\right] .
\end{aligned}
$$

- Does not require all households to trade foreign currency and domestic currency bonds, only some investors .
- Including levered financial institutions (as in He and Krishnamurthy (2013) and Kelly, He, Manela (2017)).
- Does not require any investors to trade foreign equities or any other foreign securities.
- Covers large class of 2-country International Business Cycle Models. (Chari, Kehoe, and McGrattan (2002)).

Incomplete Markets: Backus-Smith Puzzle

- FX risk premium demanded by domestic investor:

$$
\left(r_{t}^{*}-r_{t}\right)-\mathbb{E}_{t}\left[\Delta s_{t+1}\right]+\frac{1}{2} \operatorname{var}_{t}\left(\Delta s_{t+1}\right)=-\operatorname{cov}_{t}\left(m_{t, t+1},-\Delta s_{t+1}\right)
$$

- FX risk premium demanded by foreign investor:

$$
\left(r_{t}-r_{t}^{*}\right)+\mathbb{E}_{t}\left[\Delta s_{t+1}\right]+\frac{1}{2} \operatorname{var}_{t}\left(\Delta s_{t+1}\right)=-\operatorname{cov}_{t}\left(m_{t, t+1}^{*}, \Delta s_{t+1}\right)
$$

- Just add 2 FX risk premium equations to obtain:

$$
\operatorname{cov}_{t}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)=\operatorname{var}_{t}\left(\Delta s_{t+1}\right)>0
$$

- 4 Euler equations \rightarrow Conditionally counter-cyclical exchange rates (see Lustig and Verdelhan (2019)).
- Same expression as in Complete Markets

Exchange Rates are Traded..

- Project the SDF onto the space of traded assets:

$$
\begin{aligned}
\lambda_{t+1}^{*} & =\operatorname{proj}\left(m_{t+1}^{*} \mid X^{*}\right)=\mathbb{E}_{t}\left(m_{t+1}^{*}\right)+\beta_{t}^{*}\left(\Delta s_{t+1}-\mathbb{E}\left(\Delta s_{t+1}\right)\right) \\
\lambda_{t+1} & =\operatorname{proj}\left(m_{t+1} \mid X\right)=\mathbb{E}_{t}\left(m_{t+1}\right)+\beta_{t}\left(-\Delta s_{t+1}+\mathbb{E}\left(\Delta s_{t+1}\right)\right)
\end{aligned}
$$

- Projection coefficients with $\beta_{t}+\beta_{t}^{*}=-1$

$$
\beta_{t}=\frac{\operatorname{cov}_{t}\left(-\Delta s_{t+1}, m_{t+1}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)} \leq 0, \beta_{t}^{*}=\frac{\operatorname{cov}_{t}\left(\Delta s_{t+1}, m_{t+1}^{*}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)} \leq 0
$$

- Exchange rates are given by $\Delta s_{t+1}=\lambda_{t+1}-\lambda_{t+1}^{*}$;
- We can shrink $\operatorname{var}_{t}\left(\Delta s_{t+1}\right)$ (see Lustig and Verdelhan (2019)).
- At cost of shrinking FX Risk premiums :

$$
\left(r_{t}^{*}-r_{t}\right)-\mathbb{E}_{t}\left[\Delta s_{t+1}\right]+\frac{1}{2} \operatorname{var}_{t}\left(\Delta s_{t+1}\right)=-\beta_{t} v a r_{t}\left(\Delta s_{t+1}\right)
$$

- Same result for covariance with these MV SDFs: $\operatorname{cov}_{t}\left(\lambda_{t, t+1}-\lambda_{t, t+1}^{*}, \Delta s_{t+1}\right)=\left(\beta_{t}+\beta_{t}^{*}\right) \operatorname{var}_{t}\left(\Delta s_{t+1}\right)=\operatorname{var}_{t}\left(\Delta s_{t+1}\right)$.

Spanning

- Project the SDF onto the space of traded assets:

$$
\begin{aligned}
\lambda_{t+1}^{*} & =\operatorname{proj}\left(m_{t+1}^{*} \mid X^{*}\right)=\mathbb{E}_{t}\left(m_{t+1}^{*}\right)+\beta_{t}^{*}\left(\Delta s_{t+1}-\mathbb{E}\left(\Delta s_{t+1}\right)\right), \\
\lambda_{t+1} & =\operatorname{proj}\left(m_{t+1} \mid X\right)=\mathbb{E}_{t}\left(m_{t+1}\right)+\beta_{t}\left(-\Delta s_{t+1}+\mathbb{E}\left(\Delta s_{t+1}\right)\right)
\end{aligned}
$$

- Projection coefficients with $\beta_{t}+\beta_{t}^{*}=-1$
- Exchange rates are given by $\Delta s_{t+1}=\lambda_{t+1}-\lambda_{t+1}^{*}$
- Not sure market structure can be tested by checking whether exchange rates are spanned.
- Suppose we trade foreign and domestic risk-free bonds.
- Then all this says is that the exchange rate explains itself.
- Exchange rates do not have to spanned by returns on other assets, like bond returns, because we're trading the risk-free.

Back to Meese-Rogoff and Exchange Rate Disconnect

- Complete Markets: the unconditional exchange rate cyclicality satisfies
$\operatorname{cov}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)=\operatorname{var}\left(\Delta s_{t+1}\right)>0$.
- Incomplete Markets: A necessary condition for $\operatorname{cov}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)<0$ (Atkeson, Jiang, Krishnamurthy and Lustig (2023)):

$$
\sqrt{\frac{\operatorname{std}\left(\operatorname{var}_{t}\left(m_{t, t+1}\right)\right)}{\operatorname{std}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right)}+1-b \times \frac{\operatorname{var}\left(f_{t}-s_{t}\right)}{\operatorname{var}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right)}} \geq \frac{1}{\sqrt{R^{2}}}
$$

- b is the Fama slope coefficient in $\Delta s_{t+1}=a+b\left(f_{t}-s_{t}\right)+\varepsilon_{t+1}$,
- $R^{2}=\operatorname{var}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right) / \operatorname{var}\left(\Delta s_{t+1}\right)$ in a forecasting regressions.
- as $R^{2} \rightarrow 0$ (Meese and Rogoff (1983)), this becomes an impossibility result.

Four Major International Finance Puzzles

1. Volatility puzzle: Brandt, Cochrane, and Santa-Clara (2006)
2. Counter-cyclicality/Backus-Smith puzzle (correlation puzzle, exchange rate disconnect): Kollmann (1991), Backus and Smith (1993)
3. Risk premium puzzle (Forward premium / UIP puzzle):

Tryon (1979), Hansen and Hodrick (1980), Fama (1984)
4. Exchange Rate Disconnect : Meese and Rogoff (1984)

What do Financial Markets say about Exchange Rates?

- Can't square these 4 bond Euler equations with other moments of FX (listed in (1-4)):

$$
\begin{aligned}
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}+r_{t}\right)\right], \\
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}-\Delta s_{t+1}+r_{t}^{*}\right)\right], \\
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+r_{t}^{*}\right)\right], \\
& 1=\mathbb{E}_{t}\left[\exp \left(m_{t, t+1}^{*}+\Delta s_{t+1}+r_{t}\right)\right] .
\end{aligned}
$$

- We can't have domestic and foreign investors do the FX carry trade.
- Like restating the equity premium puzzle by saying that investors cannot both invest in equities and bonds.
- Financial market moment conditions seem quite (too) informative about exchange rates.

Segmented Bond Markets

- Need segmentation of foreign from domestic currency bond markets (and other domestic securities markets) for all investors, including financial institutions.

1. FX Markets Intermediated: Domestic investors with IMRS m cannot directly access foreign currency bond market. (Gabaix-Maggiori (2015); Itskhoki and Mukhin (2021);Fukui, Nakamura, and Steinsson (2023), Greenwood-Hanson-Sunderam-Stein (2020); Gourinchas, Ray and Vayanos (2020))
2. Shutting down more markets: Investors trade only bonds denominated in global numeraire. (Corsetti, Dedola, and Leduc (2008), Pavlova and Rigobon (2012))
3. Transaction Costs: (Alvarez, Atkeson, and Kehoe (2002, 2009)).

4 Bond Euler Equations with Wedges.

- Some domestic investors can invest in foreign currency bonds.
- Segmentation introduces wedges in domestic investor's Euler equation:

$$
\begin{aligned}
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}+r_{t}\right)\right] \\
\exp \left(\xi_{t}\right) & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}-\Delta s_{t+1}+r_{t}^{*}\right)\right] \\
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}^{*}+r_{t}^{*}\right)\right], \\
\exp \left(\xi_{t}^{*}\right) & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}^{*}+\Delta s_{t+1}+r_{t}\right)\right] .
\end{aligned}
$$

- Interpretation of these wedges (not really UIP shocks):

1. Transaction costs in foreign FX bonds $\left(\xi_{t}>0, \xi_{t}^{*}>0\right)$
2. Home currency bias $\left(\xi_{t}>0, \xi_{t}^{*}>0\right)$

- Investors strictly prefer bonds denominated in domestic currency, except USD (Maggiori, Neiman, Schreger (2021)).

3. Convenience yields from foreign FX bonds $\left(\xi_{t}<0, \xi_{t}^{*}<0\right)$

4 Bond Euler Equations with Wedges.

- Segmentation introduces wedges in domestic investor's Euler equation:

$$
\begin{aligned}
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}+r_{t}\right)\right] \\
\exp \left(\xi_{t}\right) & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}-\Delta s_{t+1}+r_{t}^{*}\right)\right] \\
1 & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}^{*}+r_{t}^{*}\right)\right] \\
\exp \left(\xi_{t}^{*}\right) & =\mathbb{E}_{t}\left[\exp \left(m_{t+1}^{*}+\Delta s_{t+1}+r_{t}\right)\right] .
\end{aligned}
$$

- Interpretation of these wedges:

1. Transaction costs in foreign FX bonds $\left(\xi_{t}>0, \xi_{t}^{*}>0\right)$
2. Home currency bias ($\xi_{t}>0, \xi_{t}^{*}>0$)
3. Convenience yields from foreign $\mathbf{F X}$ bonds $\left(\xi_{t}<0, \xi_{t}^{*}<0\right)$

- Investors strictly prefer USD denominated safe assets (U.S. Treasurys) (Jiang, Krishnamurthy, Lustig (2021)).

Backus-Smith Puzzle

- FX Risk premium demanded by domestic and foreign investors:

$$
\begin{aligned}
\left(r_{t}^{*}-r_{t}\right)-\mathbb{E}_{t}\left[\Delta s_{t+1}\right]+\frac{1}{2} \operatorname{var}_{t}\left(\Delta s_{t+1}\right) & =-\operatorname{cov}_{t}\left(m_{t, t+1},-\Delta s_{t+1}\right) \\
& +\xi_{t} \\
\left(r_{t}-r_{t}^{*}\right)+\mathbb{E}_{t}\left[\Delta s_{t+1}\right]+\frac{1}{2} \operatorname{var}_{t}\left(\Delta s_{t+1}\right) & =-\operatorname{cov}_{t}\left(m_{t, t+1}^{*}, \Delta s_{t+1}\right) \\
& +\xi_{t}^{*}
\end{aligned}
$$

- Just add 2 equations to obtain:

$$
\operatorname{cov}_{t}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)=\operatorname{var}_{t}\left(\Delta s_{t+1}\right)-\left(\xi_{t}+\xi_{t}^{*}\right)
$$

- 4 Euler equations with wedges \rightarrow Conditionally pro-cyclical exchange rates iff $\left(\xi_{t}+\xi_{t}^{*}\right)>\operatorname{var}_{t}\left(\Delta s_{t+1}\right)$

1. Transaction costs $\left(\xi_{t}>0, \xi_{t}^{*}>0\right) \checkmark$
2. Home currency bias $\left(\xi_{t}>0, \xi_{t}^{*}>0\right) \checkmark$
3. Convenience yields from foreign currency bonds $\left(\xi_{t}<0, \xi_{t}^{*}<0\right)$

Home Bias

- Wedges: A necessary condition for
$\operatorname{cov}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)<0$ (Atkeson, Jiang,
Krishnamurthy and Lustig (2023)):

$$
\begin{aligned}
& \frac{\operatorname{std}\left(\operatorname{var}_{t}\left(m_{t, t+1}\right)\right)}{\operatorname{std}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right)}+1-b \times \frac{\operatorname{var}\left(f_{t}-s_{t}\right)}{\operatorname{var}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right)} \geq \frac{1}{R^{2}} \\
& \left(1-\frac{\mathbb{E}\left(\xi_{t}^{*}+\xi_{t}\right)}{\operatorname{var}\left(\Delta s_{t+1}\right)}\right)
\end{aligned}
$$

- b is the Fama slope coefficient in

$$
\Delta s_{t+1}=a+b\left(f_{t}-s_{t}\right)+\varepsilon_{t+1}, \text { and }
$$

- $R^{2}=\operatorname{var}\left(\mathbb{E}_{t}\left[\Delta s_{t+1}\right]\right) / \operatorname{var}\left(\Delta s_{t+1}\right)$ in forecasting regression.
- Even as $R^{2} \rightarrow 0$ (Meese and Rogoff (1983)), we can satisfy the condition with a large home currency bias $\mathbb{E}\left(\xi_{t}^{*}+\xi_{t}\right)>0$.
- Only first moment of U.I.P. wedges matters.

Everything is Connected

1. Volatility puzzle: Brandt, Cochrane, and Santa-Clara (2006)
2. Counter-cyclicality/Backus-Smith puzzle (correlation puzzle, exchange rate disconnect): Kollmann (1991), Backus and Smith (1993)
3. Risk premium puzzle (Forward premium / UIP puzzle): Tryon (1979), Hansen and Hodrick (1980), Fama (1984)
4. Exchange Rate Disconnect : Meese and Rogoff (1984)
5. Home Bias : French and Poterba (1991), Tesar and Werner (1998), Maggiori, Neiman and Schreger (2020)

Currency Risk Premia are Real ${ }_{(11 / 1983-2 / 20211, \text { sample of developed countries) }}$

Conclusion

- Provocative paper.
- Lots we have learned from financial markets about exchange rates.

Limited Participation, No Euler Equation Wedges

- Limited Participation SDF m_{t+1} is the IMRS of small pool of investors active in asset markets at home and abroad.
- Exchange rates are shock absorbers: $\Delta s_{t+1}=m_{t+1}-m_{t+1}^{*}$.

1. Volatility puzzle:

$$
\begin{aligned}
\operatorname{var}_{t}\left(\Delta s_{t+1}\right) & =\operatorname{var}_{t}\left(m_{t+1}^{*}\right)+\operatorname{var}\left(m_{t+1}\right) \\
& -2 \rho_{t}\left(m_{t+1}, m_{t+1}^{*}\right) s t d_{t}\left(m_{t+1}\right) s t d_{t}\left(m_{t+1}^{*}\right) . \\
\rho_{t}\left(m_{t+1}, m_{t+1}^{*}\right) & \rightarrow 1
\end{aligned}
$$

2. Counter-cyclicality/Backus-Smith puzzle:

$$
\operatorname{cov}_{t}\left(m_{t, t+1}-m_{t, t+1}^{*}, \Delta s_{t+1}\right)=\operatorname{var}_{t}\left(\Delta s_{t+1}\right)>0
$$

$m_{t, t+1}$ disconnected from domestic business cycle.
3. Risk premium puzzle (Forward premium / UIP puzzle)

Hodrick Projection Argument with Lustig-Verdelhan

 Wedge- lowercase denotes logs
- When projecting the log foreign SDF onto the space of internationally traded assets, we get the following:

$$
\lambda_{t+1}^{*}=\operatorname{proj}\left(m_{t+1}^{*} \mid X\right)=E_{t}\left(m^{*}\right)+\beta^{*}\left(-\Delta s_{t+1}+E\left(\Delta s_{t+1}\right)\right)
$$

- we introduce a wedge:

$$
\Delta s_{t+1}=m_{t+1}^{*}-m_{t+1}+\eta_{t+1}
$$

- projection coefficient:

$$
\beta^{*}(\eta)=-\frac{\operatorname{cov}_{t}\left(\Delta s_{t+1}, m_{t+1}^{*}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)}
$$

Hodrick Projection Argument with Lustig-Verdelhan

 Wedgeprojection coefficient:

$$
\begin{aligned}
\beta(\eta) & =\frac{\operatorname{cov}_{t}\left(m_{t+1}^{*}-m_{t+1}+\eta_{t+1}, m_{t+1}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)} \\
& =\frac{\operatorname{cov}_{t}\left(m_{t+1}^{*}-m_{t+1}, m_{t+1}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)}+\frac{-\mu_{t, \eta}+\frac{1}{2} \operatorname{var}_{t}\left(\eta_{t+1}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)}
\end{aligned}
$$

where we have used our second condition in prop 1.

- note that $\beta(\eta) \leq 0$
- the wedge does not drop out

Hodrick Projection Argument with Lustig-Verdelhan

 Wedgeprojection coefficient:

$$
\begin{aligned}
\beta^{*}(\eta) & =-\frac{\operatorname{cov}_{t}\left(m_{t+1}^{*}-m_{t+1}+\eta_{t+1}, m_{t+1}^{*}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)} \\
& =-\frac{\operatorname{cov}_{t}\left(m_{t+1}^{*}-m_{t+1}, m_{t+1}^{*}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)}-\frac{-\mu_{t, \eta}-\frac{1}{2} \operatorname{var}_{t}\left(\eta_{t+1}\right)}{\operatorname{var}_{t}\left(\Delta s_{t+1}\right)}
\end{aligned}
$$

where we have used our first condition in prop 1.

- the wedge does not drop out
- note that $\beta^{*}(\eta) \leq 0$
- note that $\beta^{*}(\eta)+\beta^{*}(\eta)=-1$, as in Bob's derivation.

Lognormal Case

- Assumptions:
- conditional joint log normality;
- investors only trade risk-free bonds.

Result

Fix $\left(m, m^{*}\right)$ and the risk-free rates. We can construct a new exchange rate $\Delta s_{t+1}=m_{t+1}^{*}-m_{t+1}+\eta_{t+1}$ by adding a wedge η_{t+1} such that

$$
\begin{aligned}
& \operatorname{covar}_{t}\left(m_{t+1}^{*}, \eta_{t+1}\right)=-\mu_{t, \eta}-\frac{1}{2} \operatorname{var}_{t}\left(\eta_{t+1}\right) \\
& \operatorname{covar}_{t}\left(m_{t+1}, \eta_{t+1}\right)=-\mu_{t, \eta}+\frac{1}{2} \operatorname{var}_{t}\left(\eta_{t+1}\right)
\end{aligned}
$$

and some additional restrictions on $\mu_{t, \eta}=E_{t}\left(\eta_{t+1}\right)$.

