The Zero Beta Rate

Sebastian Di Tella (Stanford and NBER)
Benjamin Hébert (Stanford and NBER)
Pablo Kurlat (USC and NBER)
Qitong Wang (USC)
May 18, 2023
The Consumption Euler Equation

- The consumption Euler equation,

\[C_t^{-\sigma} = \mathbb{E}_t \left[\delta C_{t+1}^{-\sigma} \frac{R_{f,t}}{1 + \pi_{t+1}} \right] \]

is a foundation of modern macro models.

- Problem: it does not describe the data
 - with aggregate consumption \(C_t \), CPI inflation \(\pi_t \), and Treasury bill yield \(R_{f,t} \)
 - Hansen and Singleton [1983], Dunn and Singleton [1986], Yogo [2004]
The Consumption Euler Equation: Theory vs Data

- Formal GMM tests reject: Dunn and Singleton [1986], Yogo [2004]
Responses

- Maybe habits or Epstein-Zin preferences? but see Canzoneri et al. [2007]
- Maybe wrong C_t, or time preference (δ_t) shocks?

- Our hypothesis: bonds are convenient, stocks are not
 - Cash and deposits have convenience. We don’t expect the Euler equation to hold with their return. What if bonds are also convenient?

- Implication: all assets without convenience have same risk-adjusted return
 - call this the “zero-beta rate”

- We first estimate the zero-beta rate, then test the Euler equation
Main Result: A Consumption Euler Equation That Works

- cannot reject in formal GMM tests
• Key idea: time-varying estimate of zero-beta rate (Black [1972])
 - Black et al. [1972], Bali et al. [2017] : zero-beta rate 3-8% above Tsy yield
 - could have been problem with CAPM...
 - but Lopez-Lira and Roussanov [2020] and Kim et al. [2021] (among others) find high returns with no factor exposure
 - Some (weak) evidence on time-variation: Black et al. [1972], Shanken [1986]

• Macro models: large, volatile “Euler shock” needed in DSGE models (Smets and Wouters [2007]; Chari et al. [2009]; Fisher [2015])
What We Do

1. Construct a time-varying estimate of the zero beta rate
2. Show that it works in the consumption Euler
3. Implications for monetary policy
The Classic Euler Equation: Three Implications

1. Cross-sectional asset pricing: $0 = \mathbb{E}_t \left[\frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{R_{i,t+1} - R_{j,t+1}}{1 + \pi_{t+1}} \right]$

2. Safe bonds: $R_{b,t}^{-1} = \mathbb{E}_t \left[\delta \frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{1}{1 + \pi_{t+1}} \right]$

3. The zero-beta (covariance w/ sdf) rate: $R_{0,t}^{-1} = \mathbb{E}_t \left[\delta \frac{C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{1}{1 + \pi_{t+1}} \right]$
The Classic Euler Equation: Three Implications

1. Cross-sectional asset pricing:
 \[0 = E_t \left[\frac{C_{t+1}^{-\sigma} R_{i,t+1} - R_{j,t+1}}{1+\pi_{t+1}} \right] \]

2. Safe bonds:
 \[R_{b,t}^{-1} = E_t \left[\frac{\delta C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{1}{1+\pi_{t+1}} \right] \]

3. The zero-beta (covariance w/ sdf) rate:
 \[R_{0,t}^{-1} = E_t \left[\frac{\delta C_{t+1}^{-\sigma}}{C_t^{-\sigma}} \frac{1}{1+\pi_{t+1}} \right] \]

- (1) is false (cross-sectional AP e.g. Fama and French [1993])
- (2) is false (convenience, Hansen-Singleton)
- idea: test (3) without imposing (1) or (2)
- first: a modified Euler in which (3) but not (1) or (2) holds
Motivating Euler Equation

- Representative household maximizes

$$
\mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t \xi_t \left(\frac{C_t^{1-\sigma}}{1-\sigma} + \eta(\theta_t) \right) \right]
$$

- C_t: consumption, θ_t: asset holdings
- $\eta(\theta_t)$: “convenience” from asset holdings. role: explain convenience yields (2)
- ξ_t: exogenous shock to marginal utility, martingale independent of consumption
 - independence from consumption derived from primitive conditions in full model
 - role: explain why consumption doesn’t price the cross-section (1)

- generalized Euler equation for nominal asset return $R_{i,t+1}$:

$$
C_t^{-\sigma} = \frac{\partial \eta(\theta_t)}{\partial \theta_{i,t}} + \mathbb{E}_t \left[\delta \frac{\xi_{t+1}}{\xi_t} C_{t+1}^{-\sigma} \frac{R_{i,t+1}}{1 + \pi_{t+1}} \right]
$$
The Zero-Beta Rate

- Consider portfolio with (i) no convenience and (ii) uncorrelated with the SDF.
- R_{t+1} vector of N returns, $w \in \mathbb{R}^N$ weights of a zero-beta portfolio
- For zero-beta, zero-convenience portfolios only,
 1. classic consumption Euler holds,

$$C_t^{-\sigma} = \mathbb{E}_t [w' \cdot R_{t+1}] \mathbb{E}_t \left[\delta \frac{\xi_{t+1}}{\xi_t} \frac{C_{t+1}^{-\sigma}}{1 + \pi_{t+1}} \right] = R_{0,t} \mathbb{E}_t \left[\delta \frac{C_{t+1}^{-\sigma}}{1 + \pi_{t+1}} \right]$$

 2. expected portfolio return is zero-beta rate:

$$\mathbb{E}_t [w' \cdot (R_{t+1} - R_{0,t})] = 0$$

- Plan: use second + extra structure to construct zero-beta rate, then test first
Factor Structure Implementation

- Implementation: (i) use stocks, and (ii) assume linear factor SDF,

\[\delta \frac{\xi_{t+1}}{\xi_t} \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{1}{1 + \pi_{t+1}} = (R_{0,t})^{-1} + \sum_{j=1}^{K} \omega_{j,t} (F_{j,t+1} - \mathbb{E}_t [F_{j,t+1}]) + \zeta_{t+1} \]

- \(K \) factors, time-varying prices of risk \(\omega_{j,t}, \zeta_{t+1} \) uncorrelated with returns

- Constant beta of excess returns to factors:

\[R_{i,t+1} - R_{0,t} = \alpha_i + \sum_{j=1}^{K} \beta_{ij} F_{j,t+1} + \epsilon_{i,t+1}, \mathbb{E}_t [F_{j,t+1} \epsilon_{i,t+1}] = 0 \]

- note: \(R_{0,t} \), not \(R_{b,t} \), defines excess returns

- Zero-beta spread vs Tsy yield ("convenience spread") affine in \(L \) instruments \(Z_t \):

\[R_{0,t} = R_{f,t} + \gamma' \cdot Z_t \]

- \(Z_{0,t} = 1 \); extension: \(\beta_{ij,t} \) linear in \(Z_t \) (ala "conditional CAPM")

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
Portfolio Interpretation

- Pretend we know excess returns $R_{t+1} - R_{0,t}$

1. Regress excess returns on factors to get betas

2. Form minimum variance zero-beta portfolio, $w^*(\gamma, \beta)$
 - minimum variance for efficiency, Ledoit and Wolf [2017] for robustness

3. Predict returns of portfolio using instruments Z_t,

 $$w^*(\gamma, \beta)' \cdot R_{t+1} - R_{f,t} = \gamma' \cdot Z_t + \kappa_{t+1}$$
Portfolio Interpretation

1. Regress excess returns on factors to get betas
 - moments \(\mathbb{E}[F_{j,t+1}\epsilon_{i,t+1}], F_{0,t+1} = 1 \)
2. Form minimum variance zero-beta portfolio, \(w^*(\gamma, \beta) \)
 - minimum variance for efficiency, Ledoit and Wolf [2017] for robustness
3. Predict returns of portfolio using instruments \(Z_t \),
 \[
 w^*(\gamma, \beta)' \cdot R_{t+1} - R_{f,t} = \gamma' \cdot Z_t + \kappa_{t+1}
 \]
 - moments \(\mathbb{E}[\kappa_{t+1}Z_t] = 0 \)
 - Feasible: both moments at same time with GMM
 - inspired by Shanken [1986] MLE procedure
 - if all factors tradable: non-linear least squares w/ GLS
GMM Moments

- Let $\theta = (\alpha, \beta, \gamma)$ be the relevant parameters of the model.
- Define the orthogonal projection matrix, $H(\beta) = I - \beta \beta^+$.
 - If $w \in \mathbb{R}^N$ are portfolio weights, $\hat{w} = H(\beta) \cdot w$ are portfolio weights with zero beta.
- Time-series moments (α, β) + instrumented asset pricing moments (γ):

$$\begin{align*}
g_{t+1}(\theta) &= \begin{bmatrix} \epsilon_{t+1}(\theta) \otimes F_{t+1} \\ H(\beta) \cdot (R_{t+1} - R_{f,t} - \gamma' \cdot Z_t) \otimes Z_t \end{bmatrix}
\end{align*}$$

- Weight second group by $w^*(\gamma, \beta) = H(\beta)w^*(\gamma, \beta)$ for exact identification,

$$W(\theta) = \begin{bmatrix} I & 0 \\ 0 & w^*(\gamma, \beta)w^*(\gamma, \beta)' \otimes I_L \end{bmatrix}$$
Data

- Stock portfolios: size by value by market beta sorted portfolios + industries
- Factors: five equity factors (Fama and French [2015]) + 2 bond factors (Fama and French [1993]). Also: consumption SDF (doesn’t matter)
- Instruments: t-bill yield, 12m trailing inflation, unemployment, term spread, excess bond premium (EBP)
- Consumption: real Non-Durable + Services per capita
- Reasoning + Robustness in paper
Table 1: Predicting the Zero-Beta Rate

<table>
<thead>
<tr>
<th></th>
<th>(1) GMM</th>
<th>(2) OLS (inf.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lrf</td>
<td>1.186 (0.914)</td>
<td>1.187 (0.789)</td>
</tr>
<tr>
<td>Lump</td>
<td>0.105 (0.0986)</td>
<td>0.105 (0.0965)</td>
</tr>
<tr>
<td>Lebp</td>
<td>-0.603 (0.342)</td>
<td>-0.603 (0.309)</td>
</tr>
<tr>
<td>Ltsp</td>
<td>0.310 (0.118)</td>
<td>0.310 (0.119)</td>
</tr>
<tr>
<td>L2cpi_rolling</td>
<td>-2.582 (1.175)</td>
<td>-2.586 (1.048)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.718 (0.137)</td>
<td>0.716 (0.134)</td>
</tr>
<tr>
<td>Wald/F</td>
<td>21.46</td>
<td>5.012</td>
</tr>
<tr>
<td>p-value</td>
<td>0.000663</td>
<td>0.000167</td>
</tr>
<tr>
<td>Observations</td>
<td>574</td>
<td>574</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
Discussion

- Significant predictability (Wald/F); minimum-variance helps here
- High constant: 0.7%/mo excess return (not too surprising)
 - 3.2% std. dev., 0.8 annual Sharpe ratio vs. T-bills
- Spread increasing in rate level (Nagel [2016]), statistically weak
- Spread decreasing in inflation (contra Cohen et al. [2005] story?)
- Inverted TS, high EBP, low ump: bad expected returns when recession soon
 - Macro variables help predict these stock returns
Our perspective: $R_{0,t} - R_{f,t} = \mathbb{E}_t [R_{p,t+1} - R_{f,t}]$ represents convenience yield

Alternative perspective: $R_{p,t+1} - R_{f,t}$ is an omitted factor
- with a high Sharpe ratio, uncorrelated with all other factors
- by no-arbitrage, there is an SDF the prices the stocks + Treasury bills

The two perspectives can co-exist within the same model
- Frazzini and Pedersen [2014]
- and with other stories: Hong and Sraer [2016], Bali et al. [2017]

Our perspective can explain why $R_{0,t}$ predicts consumption growth
The Linearized Euler Equation

- Linearizing the consumption Euler equation:
 \[E_t[\Delta c_{t+1}] = \sigma^{-1} \ln(\delta) + \sigma^{-1} (r_{0,t} - E_t[\pi_{t+1}]) \]

- our figures line up the means, scale by standard deviations
- in effect, choosing \(\delta \) using the means and \(\sigma \) using the std. devs.

- Next:
 1. revisit figures
 2. compare \(r_{0,t} \) and \(r_{f,t} \) as predictors of \(\Delta c_{t+1} \)
 3. discuss weak identification problem
 4. conduct weak-i.d.-robust GMM inference
Main Result: A Consumption Euler Equation That Works

- Predictive regressions for inflation and consumption growth using Z_t
• No visually detectable differences when omitting consumption factor
Robustness: Ridge Regressions

- γ and consumption prediction penalized using ridge, 10-fold cross-validation
What Can Go Wrong

- Too many factors: estimates noisy but unbiased
- Omitted factors:
 - omitted factor with constant risk price: only level biased, Euler still works
 - omitted factor with one-month ahead return predictability by our instruments: bias
- Too many instruments: weak identification (discussed next)
- Not enough instruments:
 - need at least two
 - bias if omitted instrument predicts either consumption growth or portfolio returns
Placebo: 6-11y Treasury Bond Returns

- convenience (bonds) and predictable risk premium [Campbell and Shiller, 1991]

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
Recap

- Two predictive regressions:

\[\Delta c_{t+1} = \sigma^{-1} \ln(\delta) + (\sigma^{-1} \gamma^c)' \cdot Z_t + \epsilon_{t+1}^c, \]

\[r_{p,t+1} - \pi_{t+1} = (e_b + \gamma - \gamma^\pi)' \cdot Z_t + \epsilon_{t+1}^0. \]

- Define \(\hat{\gamma} = \sigma^{-1} \gamma^c - e_b + \gamma - \gamma^\pi \)

- Our graphs show \(\hat{\gamma}' \cdot E[Z_tZ'_t] \cdot \hat{\gamma} \) is small (point estimates)

- Next steps:
 1. Test statistically if non-linear Euler can be rejected
 1.1 challenge: potential for weak instruments
 2. Test economically: do monetary shocks affect \(\hat{\gamma}' \cdot Z_t \) (at point estimates)?
• Big picture: Stock and Wright [2000] meets Cochrane [2009]
 1. Conjecture value of σ_0 (null hypothesis)
 2. Estimate $\hat{\theta}(\sigma_0)$ using previous procedure
 2.1 constructs same zero-beta rate given σ_0
 3. Estimate $\hat{\delta}(\sigma_0)$ using $\mathbb{E}[\delta(\frac{C_{t+1}}{C_t})^{-\sigma_0} \frac{1}{1+\pi_{t+1}} R_{0,t}(\gamma)] = 1$
 4. Test using unused moments $\mathbb{E}[(\delta(\frac{C_{t+1}}{C_t})^{-\sigma_0} \frac{1}{1+\pi_{t+1}} R_{0,t}(\gamma) - 1)Z_{l,t}] = 0$
• S-set: values of σ_0 not rejected with 95% confidence
• OLS moments (α, β) + asset pricing moments (γ) + cons. Euler (δ):

$$
\begin{align*}
 g_{t+1}(\theta, \delta, \sigma_0) &= \\
 &= \left[\begin{array}{c}
 \epsilon_{t+1}(\theta) \otimes F_{t+1}(\sigma_0) \\
 H(\beta) \cdot (R_{t+1} - R_{0,t}(\gamma)) \otimes Z_t \\
 \left(\delta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma_0} \frac{1}{1 + \pi_{t+1}} R_{0,t}(\gamma) - 1 \right) \otimes Z_t
 \end{array} \right]
\end{align*}
$$

• Weight matrix:

$$
W(\theta) = \left[\begin{array}{cccc}
 I & 0 & 0 \\
 0 & w^*(\gamma, \beta) w^*(\gamma, \beta)' \otimes I_L & 0 \\
 0 & 0 & e_0 e_0'
\end{array} \right]
$$

• Same exact identification scheme for (α, β, γ)
 - will recover same zero-beta rate given σ_0

• Exactly identify δ by average cons. Euler
Testing with Unused Moments

- For $l > 0$, the unused moments are

$$g_{l,t+1}(\theta, \delta, \sigma_0) = \left(\delta \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma_0} \frac{1}{1 + \pi_{t+1}} R_{0,t}(\gamma) - 1 \right) Z_{l,t}$$

- Let $\psi_{Test}(\sigma_0)$ be the vector $\frac{1}{T} \sum_{t=1}^{T} g_{l,t}(\hat{\theta}_1(\sigma_0), \hat{\delta}(\sigma_0), \sigma_0)$

- Let $\hat{V}_{Test}(\sigma_0)$ be the (robust) covariance matrix of $\psi_{Test}(\sigma_0)$

- Following Stock and Wright [2000]: under null of $\sigma = \sigma_0$,

$$\hat{S}(\sigma_0) = \psi_{Test}(\sigma_0)' \cdot \hat{V}_{Test}(\sigma_0)^{-1} \cdot \psi_{Test}(\sigma_0) \to^d \chi^2_L$$

 - robust to σ_0 weak i.d., not most powerful (Andrews [2016])

- Also show results for $R_{f,t}$ and $R_{m,t+1}$ in place of $R_{0,t}$ (Yogo [2004])
S-Set Results

- \(R_{f,t} \): rejected
- \(R_{m,t+1} \): not identified
- \(R_{0,t} \): reject \(\sigma \leq 1.5 \), not reject \(\sigma \geq 1.5 \)

- Nothing can reject for \(\sigma \geq 20 \) (COVID, rare disaster)

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
• The consumption Euler equation holds when applied to the zero-beta rate
 • in contrast to using a Treasury bill rate (rejected) or the market return (unidentified)
• Robustness:
 • Test assets: More sorts
 • Factors: linear cons., Mkt+cons., FF3+cons., linear betas
 • Instruments: +shadow spread, +lag cons., +CAPE, BAAS instead of EBP
 • Others: Non-durable goods cons. only, pre-COVID
When recessions are imminent (inverted term structure, high credit spreads, but currently low unemployment), agents expect:

1. negative consumption growth (generates desire to save)
2. low risk-adjusted (zero-beta) stock returns (offsets desire to save)

Interest rates don’t enter this calculation

- short-dated bonds are held for convenience
- longer-dated bonds inherit some convenience via financing

Natural question: how does monetary policy change the zero-beta rate?
Monetary Shocks and the Zero-Beta Rate

- Is the convenience yield endogenous (concern of Chari et al. [2009])?
- Tension:
 - fed funds hike raise rates more generally
 - but lower consumption growth
 - inconsistent with standard Euler equation
- Suppose $R_{0,t} = \gamma' \cdot Z_t$ is structural
- How do Nakamura and Steinsson [2018] shocks affect $\gamma' \cdot Z_t$?
 - updated shocks from Acosta [2022]
 - paper: Romer and Romer [2004] shocks
Effects of NS Shocks

- change from $t-1$ to $t+h$ regressed on NS shock in month t
- rates scaled ($1 = 1:1$ with fed funds)

Graph showing the effects of the Nakamura-Steinsson shock over time.
Interpretation

- In response to a surprise monetary hike:
 - Data: consumption growth falls, then (maybe) rises (“hump”)
 - Vanilla NK: consumption drops on impact, then grows
 - standard fix: habits
 - but habits don’t fix Euler (Canzoneri et al. [2007]), inconsistent with MPCs (Auclert et al. [2020])

- Our story: zero-beta rate falls on impact, cons. gr. falls, vanilla Euler works
 - standard errors too large to test reversion (second part of “hump”)
 - alternative to sticky information hypothesis (Auclert et al. [2020])
Related Papers on Stock/Bond Segmentation

- Itskhoki and Mukhin [2021] exchange rate disconnect

- ROE on arbitrages (say, JPY-USD CIP) is 3-7% over bills (Boyarchenko et al. [2018])

- High return on physical capital: Gomme et al. [2011], Farhi and Gourio [2018]

- Beta anomaly (Frazzini and Pedersen [2014], Hong and Sraer [2016])

- Corporate finance implications thereof (Baker and Wurgler [2015], Baker et al. [2020])

- Equity premium puzzle (Bansal and Coleman [1996])
Conclusion

• The intertemporal price of consumption is not the yield on a Treasury
• The consumption Euler works— if you use the zero-beta rate
• This changes our understanding of monetary policy:
 • monetary shocks substantially alter convenience yields
• 3x3x3 beta by size by \{value, prof., inv.\} + 49 industry portfolios
No Consumption Factor

- No consumption-related factor
Linear Consumption Factor

- Linear consumption factor + separate inflation factor
Market Factor

- Market + Non-Linear Consumption factor only

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
FF3 Factors

- Market, Size, Value, and Non-Linear Consumption factors only

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
Linear Betas

- $\beta_t = \beta_0 + \beta_1 \cdot Z_t$; 37 factors (6 factors \times 6 Z + 1 consumption-related)

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
With Shadow Spread Instrument

- Includes Lenel et al. [2019] bill vs. term-structure-extrapolated bill as instrument

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
With Lagged Consumption Instrument

- Includes Δc_{t-1} as instrument

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
With CAPE Instrument

- Includes Campbell-Shiller cyclically-adjusted P/E ratio as instrument
With BAA-Tsy in place of EBP

- Includes Moody’s BAA-Treasury spread instead of EBP as instrument

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
With Non-Durable Goods Consumption Only

- Consumption is real non-durable goods consumption per capita

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate
Without COVID

- Data sample ends in December 2019

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate

Alejandro Lopez-Lira and Nikolai L Roussanov. Do common factors really explain the cross-section of stock returns? Available at SSRN 3628120, 2020.

Emi Nakamura and Jón Steinsson. High-frequency identification of monetary

Di Tella, Hébert, Kurlat, Wang (2022) The Zero Beta Rate

