Intermediary Balance Sheets and the Treasury Yield Curve

Wenxin Du1 (NY Fed, Chicago, NBER, CEPR)
Benjamin Hébert (Stanford, NBER)
Wenhao Li (USC)

November 18, 2022

1The views expressed in this presentation are those of the authors and not those of the Federal Reserve Board of Governors or the Federal Reserve System.
Treasury “Inconvenience”?

Pre-GFC:
- Treasury bonds were convenient (low yield relative to swap rates)
 - i.e. positive swap spreads (swap rate - Treasury yield)
- Covered interest parity (CIP) violations were roughly zero

Post-GFC:
- Treasury bonds are inconvenient (negative swap spreads)
- CIP violations are non-zero

Du et al 2018, Jermann 2020: CIP/swap spread reflect limits to arbitrage

This paper: unified framework to explain yields, positions, CIP, and swap rates
- Sign of position, swap spreads coincide (“regimes”)
- Regime determines effects of QE/QT and other policies
Known: (i) swap spread pos. to neg. and (ii) CIP zero to neg.
New Facts: (i) dealer net position neg. to pos. and (ii) CIP/swap spread correlation

Note: net position is not “inventory”
Interpretation: swap spread/CIP are arbitrages that use balance sheet

Interpretation of position vs. spread: dealers care about swap-hedged Treasury returns
What We Do: Part 1

- Model dealers’ demand for Treasury bonds
 - Accounting for funding spreads, balance sheet costs, interest rate risks

- By constructing long and short arbitrage bounds for Treasury yields
 - Novel approach: no-arbitrage-style reasoning that accommodates balance sheet costs
 - Affine term structure model.

- Show that actual yields switched bounds as dealer net positions changed
 - close to short bound when dealers were short (pre-GFC)
 - close to long bound when dealers were long (post-GFC)
 - i.e. prices and quantities move together across regimes

- Part 2: interact dealers as arbitrageurs with return-seeking clients
Broader Agenda: Asset Pricing with Arbitrage

- Du, Hébert, Huber (2022): Is the risk that arbitrage spreads get bigger priced?
 - Yes; it is a substantial component of dealers’ SDFs

- Hébert (2022): What can we learn about the optimality of policy from the signs of arbitrage spreads?
 - A lot: we can infer what kinds of externalities would justify current policy
Related Literature

- Jermann 2020: calibration in which dealer constraints explain negative swap spreads
 - We measure quantities, quantify constraints with CIP, explain quantity-slope correlation

- He, Nagel, and Song 2021: shares focus on dealer constraints and swap spreads.
 - They compare GFC vs. COVID crisis events; explanation: sign of customer shocks
 - We compare pre- and pre-GFC periods; explanation: regimes, no change in shocks

- Our view: Treasurys are convenient to clients but inconvenient to intermediaries.
 - Treasury convenience: Longstaff 2004, Krishnamurthy and Vissing-Jorgensen 2012, Greenwood, Hanson, and Stein 2015, etc.

- The market equilibrium model in Hanson, Malkhozov, and Venter 2022 is similar in spirit to ours but focuses on the swap market. Complementary approach.

- Arbitrage view of dealers unlike return-seeking commercial banks (Haddad and Sraer 2020).
Three zero-cost, \(n \)-period, balance-sheet-using arbitrages

1. Long Treasury vs. swap:
 - buy \(n \)-period Treasury, yield \(y_{n,t} \), financed at \(r_t^{long} \), pay swap fixed rate \(r_{n,t} \), receive swap floating rate \(r_t \)

2. Short Treasury vs. swap:
 - short-sell \(n \)-period Treasury, yield \(y_{n,t} \), borrow bond against cash collateral, receive \(r_t^{short} \) on cash, receive swap fixed rate \(r_{n,t} \), pay swap floating rate \(r_t \)

3. \(n \)-period CIP trade:
 - borrow dollars at \(r_t \), convert to euros, lend euros, use currency forward to convert back to dollars, “synthetic” dollar rate \(r_t^{syn} \geq r_t \)
 - use swaps to lock in \(r_t^{syn} - r_{t+j} \) for \(n \) periods (details unimportant)
Balance-Sheet Neutral Treasury Trading Strategies

(A) Long Treasury

- Treasury Bonds $y_{n,t}$
- Financing r_t^{long}
- Dollar Lending in FX Swap r_t^{syn}
- Unsecured Funding r_t

(B) Short Treasury

- Treasury Bonds Borrowed $y_{n,t}$
- Interest rate on cash r_t^{short}
- Dollar Lending in FX Swap r_t^{syn}
- Unsecured Funding r_t

- Unsecured Funding r_t
A Simple Model of Dealers and Arbitrage

- Consider a dealer that chooses between trading a single n-period zero-coupon Treasury bond, v.s. CIP arbitrage.

- Q reflects dealer’s SDF for zero-cost, zero-balance-sheet trades (i.e. derivatives).
 - exists assuming no arbitrage within derivatives
 - no direct implications for bond prices (non-zero cost, non-zero balance sheet)

- Define the expected next-period bond price as
 \[p_Q \equiv \exp(-(n-1)y_Q) \equiv E^Q[\exp(-(n-1)y_{n-1,1})] \]

 - swap rates are hiding in p_Q via Q
Dealer’s Problem

\[
\max_{q^{bond}, q^{syn}} \left(e^{r^{syn}} - e^{r} \right) \cdot q^{syn}
\]

synthetic lending spread (CIP violation)

\[
+ \left(\frac{p_Q}{e^{-ny}} - e^{r^{long}} \right) \cdot \max\{q^{bond}, 0\}
\]
sell after one period

\[
+ \left(e^{r^{short}} - \frac{p_Q}{e^{-ny}} \right) \cdot \max\{-q^{bond}, 0\}
\]
earn return on cash collateral

subject to balance sheet constraint:

\[
|q^{bond}| + q^{syn} \leq \bar{q}
\]

● Assume dealers do CIP arbitrage \(q^{syn} > 0\).
The Short Regime

- Short regime (the optimal $q^{bond} < 0$): dealer FOC implies

$$e^{-ny} = \frac{p_Q}{e^{r_{short}} - (e^{r_{syn}} - e^r)}$$

- Denote the short-regime yield as y^s. Consider a special case of one-period bond ($p_Q = 1$). The log-linearized version is

$$r - y^s \approx r^{syn} - r + (r - r^{short})$$

- swap spread
- balance sheet cost
- security borrowing cost
The Long Regime

- Long regime (the optimal $q^{bond} > 0$): dealer FOC implies

$$e^{-ny} = \frac{p_Q}{e^{r_{long}} - e^r + e^{r_{syn}}}$$

- Denote the long-regime yield as y^l. Consider a special case of one-period bond ($p_Q = 1$). The log-linearized version is

$$r - y^l \approx - (r_{syn} - r) + (r - r^{long})$$

14 / 37
No Arbitrage Pricing with Balance Sheet Costs

● Generalize previous logic to multi-period setting
 ▶ and multiple bond maturities, without assuming fixed balance sheet size

● Premise: a dealer SDF prices all zero-cost, zero-balance sheet trading strategies

● Construct near-arbitrage bounds:
 ▶ If yield sufficiently high: buy bond, finance with borrowing, hedge with swap; offset balance sheet with less CIP trade
 ▶ Wait until yield reverts or maturity approaches, then unwind
 ▶ Not exact arbitrage because of residual basis risk, e.g., swap floating rate vs. financing rate
 ▶ This defines the “net long yield,” “net short yield” constructed in similar fashion
Multi-Period Net Long and Net Short Curve

- All yields are now in annualized units, each period is one month
- Swap rates still hiding in Q
- Arbitrage bound: Dealers must be willing to long if $y_{n,t} \geq y_{n,t}^l$, defined recursively by
 \[e^{-\frac{n}{12}y_{n,t}^l} = \frac{E_t^Q[e^{-\frac{n-1}{12}y_{n-1,t+1}}]}{e^{\frac{1}{12}r_t^long} - e^{\frac{1}{12}r_t} + e^{\frac{1}{12}r_t^{syn}}} \]
- Arbitrage bound: Dealers must be willing to short if $y_{n,t} \leq y_{n,t}^s$, defined recursively by
 \[e^{-\frac{n}{12}y_{n,t}^s} = \frac{E_t^Q[e^{-\frac{n-1}{12}y_{n-1,t+1}}]}{e^{\frac{1}{12}r_t^{short}} + e^{\frac{1}{12}r_t} - e^{\frac{1}{12}r_t^{syn}}} \]
The Term Structure Model

- Fit term structure model to OIS, CIP curves
- Use standard affine TS approach as in Joslin, Singleton, and Zhu (2011)
- Then construct net long and net short curves
- Key point: TS model for interpolation, Jensen’s inequality, etc... Balance sheet costs + funding spreads are key inputs, determined by data
Estimating Buy and Sell Curves

- Affine term-structure model (based on Duffie (1996), Joslin, Singleton, and Zhu (2011)):

\[z_{t+1} = k_0^P + K_{1,t} \cdot z_t + (\sum_z)^{1/2} c_{z,t+1}, c_{z,t+1} \sim N(0, I_N), \]

\[m_{t+1} = - (\delta_0 + \delta_1 \cdot z_t) - \frac{1}{2} \lambda T \cdot z_t + \lambda_T e_{z,t+1}, \lambda_t = (\sum z^{-1})(\lambda_0 + \Lambda_1 z_t) \]

- Augment with “macro” factors \(x_t = (x_{1,t}, x_{2,t}, y_{6,t}^{\text{bill}}) \)

\[x_{1,t} = \ln((1 - h)(e^{1/12} r_{t}^{\text{long}} - e^{1/12} r_t) + e^{1/12} r_t^{\text{syn}}), \text{ (for buy curve)} \]

\[x_{2,t} = \ln(e^{1/12} r_t^{\text{short}} - (e^{1/12} r_t^{\text{syn}} - e^{1/12} r_t)), \text{ (for sell curve)} \]

- Assume \(y_{6,t} = y_{6,t}^{b} = y_{6,t}^{s} = y_{6,t}^{\text{bill}} \) (unwind when bond is equivalent to 6-mo bill)

- affects short-maturity bonds, not so much for long maturities

- long: tri-party repo financing short: security lending rates

- Fit the OIS curves and the basis curves.
OIS Curve Fit

6-month maturity

1-year maturity

3-year maturity

5-year maturity

10-year maturity

20-year maturity
Cross-Currency Basis Fit
The Net Long and Net Short Curves

6-month maturity
6-year maturity
3-year maturity
5-year maturity
10-year maturity
20-year maturity
The Net Long and Net Short Curves (difference w.r.t. OIS)
Treasury Yields Relative to Long/Short Curves and Dealer Positions

2-year maturity

5-year maturity

10-year maturity

20-year maturity
Takeaways

- Pre-GFC, yields were near net short curve (“short regime”)
 - net long vs. net-short gap small due to small balance sheet costs
 - swap spreads positive due to sec. lending vs OIS spreads

- Post-GFC, treasury yields are near net long curve (“long regime”)
 - net long vs. net-short gap large due to large balance sheet costs
 - swap spreads negative due to balance sheet costs + switch from sec. lending to tri-party repo rates

- Validates arbitrage-centric view of dealer net positions

- Next questions:
 - What caused the pre- to post-GFC changes? (speculative)
 - What are the policy implications of being in the long vs. short regime?
What We Do: Part 2

- Interact dealers with clients seeking returns
 - Key: dealers care about swap-hedged returns, clients about unhedged returns
 - Two-period, two-market model (treasury bonds and synthetic dollars)
 - Swaps and money markets exogenous
 - Comparative-statics depend on regime
 - +Tsy supply can generate regime switch

Policy implications:
- Curve flattening and quantitative tightening will constrain dealer balance sheets
- Leading to higher treasury yields, CIP basis
- Regulatory (SLR) exemptions and swap lines can help
New Fact iii: Dealers Buy High and Sell Low

- Net position decreases in term spread (proxy term premium), contra Jermann 2020
- Interpretation: dealers don’t care about unhedged Treasury returns, clients do
An Equilibrium Model

- **Agents:**
 - intermediary: dealers and levered clients (consolidated, see appendix),
 - real-money Treasury investors (e.g., pension funds)
 - FX-hedge foreign Treasury investors (e.g., foreign life insurance companies)
 - other agents demanding synthetic dollars

- **Exogenous:** swaps, money markets (incl. t-bills), security lending, expected future bond prices (y_P, y_Q)

- **Endogenous:** current n-period treasury bond yield (y), synthetic dollar lending rates (r^{syn})
 - Idea: model single period of a more dynamic model
 - single bond maturity: simplification to avoid thinking about substitutability

- **Note:** y, y^{bill}, and y_Q are not linked by usual arb. formula
 - the SDF associated with Q does not price bonds
Intermediaries solve static problem described earlier, with constraint

$$|q^{bond}| + q^{syn} \leq \bar{q}$$

Real-money investors (e.g., pension funds and mutual funds) demand

$$D_{U}^{bond} = D_{U}(ny - (n - 1)y_P - y^{bill})$$

Exp. Dollar Return vs Bill

FX-hedged foreign investors (e.g., foreign life insurance companies) demand

$$D_{H}^{bond} = D_{H}(ny - (n - 1)y_P - r^{syn})$$

Exp. Dollar Hedged Excess Return

Key point: clients care about unhedged Treasury returns, not swap-hedged returns
Market Clearing

- Bond supply: S^{bond} (in notional, i.e., number of bonds)

- Treasury market:

$$\exp(-ny)S^{bond} = q^{bond} + D^{bond}_U + D^{bond}_H$$

Treasury bond supply in dollars

- Synthetic lending market:

$$q^{syn} = D^{bond}_H + D^{syn}(r^{syn} - r)$$

intermediary supply of syn lending

residual demand

- Each unit of FX-hedged bond requires synthetic financing
The equilibrium is unique

Equilibria can be classified as long/intermediate/short based on q^{bond}

Comparative statics differ across equilibria. For example:
- long regime: larger bond supply S^{bond} increases y and r^{syn}.
- short regime: larger bond supply S^{bond} increases y but decreases r^{syn}.

Key regime determinant: bond supply and OIS term premium.
- Bond supply high (low): long (short) regime
- swap term premium high (low): short (long) regime
The Long Regime

Long Regime (High, Higher, Highest Supply)

- Market Clearing + Balance Sheet (high supply)
- Market Clearing + Balance Sheet (higher supply)
- Market Clearing + Balance Sheet (highest supply)
- Dealer Net Long Curve (10bps OIS term prem.)
- Dealer Net Long Curve (20bps OIS term prem.)
The Short Regime

- **Treasury Term Spread**
- **CIP Violation**
- **Short Regime** (Low, Lower, Lowest Supply)
- **Market Clearing + Balance Sheet**
 - (lowest supply)
 - (lower supply)
 - (low supply)
- **Dealer Net Short Curve**
 - (10bps OIS term prem.)
 - (20bps OIS term prem.)
Explaining the Data

- Pre-GFC: Short regime, ample balance sheet capacity
 - almost no CIP violations, swap rates + Treasury yields move in parallel
 - Treasury curve flatter than swap curve (positive spreads)

- Post-GFC: Long regime, scarce balance sheets capacity
 - Treasury curve steeper than swap curve (negative swap spreads)
 - Large CIP violations, CIP + swap spreads correlated
 - Dealers positions correlated with yield curve slope
Key Changes Pre/Post GFC

- Supply of treasurys has expanded, dealer balance sheets have contracted
Regimes and Treasury Market Fragility

- Crises reduce dealer capacity \bar{q}.

- In the short regime (pre-2009) a bad shock to intermediary balance sheet decreases the Treasury yield relative to swaps.

- In the long regime (post-2009) a bad shock to intermediary balance sheet increases the Treasury yield relative to swaps.
 - An explanation of the Treasury market turmoil in March 2020 (Duffie (2020)).
 - Our explanation does not rely on “selling pressure” in the Treasury market (He, Nagel, and Song (2022)). Quantifying both forces is an interesting future direction.
Policy Implications

- **Caveat:** partial equilibrium holds fixed swap and money market rates
 - prices changes here will dampen other price and quantity responses
 - interpret Tsy yield and lending rate as *relative spreads to swaps*.

- **Synthetic lending rate** r^{syn} is the rate on all non-repo-financed, balance-sheet-using assets.

<table>
<thead>
<tr>
<th>Policy Type</th>
<th>Long Regime</th>
<th>Short Regime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tsy Yield</td>
<td>Lending Rate</td>
</tr>
<tr>
<td>QT (purchasing bills, selling bonds)</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>\downarrow Term premium</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>SLR Exemptions</td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
<tr>
<td>Swap line (Fed synthetic $ lending)</td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
</tbody>
</table>
Looking Ahead: Monetary Policy Tightening Cycles

- Current yield curve (right figure)
 - Fed has begun hiking and QT, RRP active

- Model predicts:
 - large dealer net long position
 - widening basis
 - more negative swap spreads
 - higher bond yields

- Significant market stress
 - SLR exemptions or swap lines can help
Appendix
Hedge Funds and Primary Dealers

- PD Net Coupon Tsy Holding (Bln)
- Short position in Tsy futures of levered funds (bln)
Dealer Net Treasury Positions are not Inventory

- Easy to short Treasurys, hard to short other bonds