Inflation Tail Risks

Prof. Arvind Krishnamurthy

Money and Banking

WHAT IS CAUSING INFLATION?

FRED. \approx - Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma

Year-on-year inflation

FRED. - Personal Consumption Expenditures: Chain-type Price Index Less Food and Energy

- Personal consumption expenditures: Durable goods (chain-type price index)
- Personal consumption expenditures: Services (chain-type price index)
- Personal consumption expenditures: Nondurable goods (chain-type price index)

Services share from NIPA Personal Consumption

Services Share (Services/(Goods + Services))

Wages and Prices

Fast-food prices and wages, change vs. a year ago

Quantity of labor

Price of labor: $1^{\text {st }}$ quartile (yellow) is lowest wages

$$
\begin{aligned}
& 6 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& -1 \text { st }-2 n d-3 r d-4 \text { th }
\end{aligned}
$$

Inflation swaps: 1 year, 5 year, 10 year

Uneven inflation around the world

FRD. - Consumer Price Index: All Items Excluding Food and Energy for United Kingdom

- Consumer Price Index: All Items Excluding Food and Energy for Canada
- Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average
- Consumer Price Index: All Items Excluding Food and Energy for Germany
- Consumer Price Index: All Items Excluding Food and Energy for Japan

Uneven downturn and recovery (real GDP annual)

	2020	2021 est	2022 IMF proj
United States	-3.8%	5.7%	4.3%
Germany	-4.6	2.9	4.4
United Kingdom	-10.2	6.4	4.4
Canada	-6.4	5.1	3.8
Japan	-4.3	2.7	3.6
Italy	-8.6	5.9	4.3

Fiscal support differences

	Fiscal Support (\% of GDP)	Loans, Equity, Guarantees
US	25.6%	2.4%
UK	16.2	16.1
Australia	16.1	1.8
Japan	15.9	28.3
Canada	14.6	4.0
Germany	11.0	27.8
Italy	8.5	35.3

Blue = US; White $=$ Germany; Red $=$ Japan
All series are 2-year CPI Inflation Swap

UK inflation swap is RPI (overstates by about 1\%)

5y-5y forward inflation: US (blue); Euro (white)

FWISUS55 Index

96) Actions • 97) Edit

11/30/2019ㅁ-12/01/2021ㅁㅁ Last Px Local CCY • - Mov Avgs, ■ Key Events

Last Price

- FWISUS55 Index 2.4890

FWISEU55 Index 1.8587

INTEREST RATES

Charlie Evans (President of Chicago Fed) in 2011

"Suppose we faced a very different economic environment: Imagine that inflation was running at 5\% against our inflation objective of 2%. Is there a doubt that any central banker worth their salt would be reacting strongly to fight this high inflation rate? No, there isn't any doubt. They would be acting as if their hair was on fire. We should be similarly energized about improving conditions in the labor market."

Taylor Rule with only inflation (i.e., u near u*)

$$
i_{f f}=\Pi+r^{*}+\left(\Pi-\Pi^{*}\right)-K_{2}\left(u-u^{*}\right)
$$

- If inflation at 4.1\%; target (Π^{*}) is 2%
- Suppose growth rate steady state is $1 \%\left(r^{*}\right)$
- Then ... $i_{f f}$ should be 7.2\%

Inflation and interest rates

- Expected inflation is now about 4.1% for the next one year
- One-year nominal rates around 0.5%
- Real rate $=-3.6 \%$
- Buy stuff now? But what ... transitory vs permanent

Taylor Rule with only inflation (i.e., u near u*)

$$
i_{f f}=\Pi+r^{*}+\left(\Pi-\Pi^{*}\right)-K_{2}\left(u-u^{*}\right)
$$

- If inflation at 3%; target (Π^{*}) is 2%
- Suppose growth rate steady state is $1 \%\left(r^{*}\right)$
- Then ... $i_{f f}$ should be 5%

Fed Funds Futures

10 year bond yields: US(white), UK (red), Germany (purple)

Inflation tail risk .. if it ends up raising long rates

- Real estate
- Equity valuations
- Government fiscal situation can worsen

Inflation, housing and affordability

- Buy $\$ 300 \mathrm{~K}$ home, with 20% down \rightarrow
- \$240K mortgage at 4%, monthly payment $=\$ 1,146$
- Suppose household has monthly income of $\$ 4000$. Rule of thumb for payment-to-income around 28%
- Affordable payment = \$1,120
- So, the 300K home is just about affordable

Inflation and affordability

- Suppose inflation goes from 2% to 4% and mortgage rates rise from 4\% to 7%
- inflation + fed raises rates to combat inflation
- $\$ 240 \mathrm{~K}$ mortgage at 7%, monthly payment $=\$ 1,597$
- Today monthly income still $\$ 4000$ (grows at 4% with inflation).
- Affordable payment still =\$1120
- So, max home price affordable $=\frac{1120}{1597} X 300 \mathrm{~K}=\$ 210 \mathrm{~K}$ vs $\$ 300 \mathrm{~K}$

Real estate and crises

Figure 1: Real Housing Prices and Banking Crises

Real estate and crises

Firm valuation

- Gordon growth formula:

$$
P=\frac{D}{(r+\pi+E R P)-\left(g_{\text {nominal }}+\pi\right)}
$$

- Inflation roughly a wash for a very long-duration asset
- For short-duration assets, Fed hikes can weigh more heavily
- But if real estate falls ... Spending feedbacks, ERP rises

Takeaways

- Inflation is likely tied to uneven recoveries and bottlenecks
- Faster recovery, fiscal support in US hits various bottlenecks
- Some of that around the world
- Despite inflation and expected inflation, long-term nominal yields have remained stable
- And despite a very dovish Fed
- Puzzling to me ... much lower growth prospects?
- If long rates react more normally, there are other risks...

Our coverage in one slide:

- Inflation determination
- Labor market, unemployment
- Fed objectives, Taylor Rule

MacroEconomy

- What is "money"?
- Monetary system
- Bank reserves
- Fed balance sheet
- Policy tools
- Quantitative easing

- Debt markets
- Yield curve analytics
- Expectations hypothesis
- Long maturity bond yields
- Stock market valuation

EXTRA: GOVERNMENT FINANCES

Government debt

Percentage of GDP

Government debt maturity

Treasury Maturity Profile History

Inflation scare and debt

- Suppose all debt is short-term and there is an inflation scare

$$
i=r+\pi-\text { LiqPrem }
$$

- And $g=r+\pi$
- Debt still sustainable.
- Tax receipts grow at the rate of inflation

Inflation and debt

- Suppose now debt is all long-term and inflation rises from π_{0} to π_{1}

$$
i=r+\pi_{0}-\text { LiqPrem }
$$

- And $g=r+\pi_{1}$
- Tax receipts grow at the rate of inflation; interest rate locked in
- Debt is "inflated" away
- Reality is in the middle since $30-50 \%$ of debt is short-term

Inflation, debt, and Taylor rule

- Go back to debt is all short-term.
- Fed has historically raised rates approx two-for-one with inflation

$$
i=r+b \pi \quad \text { with } \quad b=2
$$

- So $g-i=$ LiqPremium $-(b-1) \pi$
- Debt is not sustainable
- Does that mean that the Fed will be strong-armed to set $b=1$?

